Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a : (3x^2y-6xy+9x)(-4/3xy)
=-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x
=-4x+8-8y
cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)
=(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3
=(1/3)^3 + (2y)^3x-2
cau c : (x-2)(x^2-5x+1)+x(x^2+11)
=x^3-5x^2+x-2x^2+10x-2+x^3+11x
=2x^3-7x^2+22x-2
cau d := x^3 + 6xy^2 -27y^3
cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y
cau f := x^2-2x+2x -4-2x-1
= x(x-2)-5
Câu 1: \(3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\).
Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)
\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)
\(\Rightarrow-3\left(x-7\right)=3\)
\(\Rightarrow x-7=-1\)
\(\Rightarrow x=6.\)
Câu 3:
Áp dụng hằng đẳng thức mở rộng có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=a^3+b^3+c^3-3abc.\)
Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)
\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)
\(=-6x^2y^2+4y^3.\)
Câu 5:
Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)
\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)
\(=12x^2-10x-12-24x+12x^2+12-6x\)
\(=24x^2-40x.\)
a: \(=-3x^3y^3-3x^2y^2+2x^2y\)
b: \(=6x^2+12x-2x-4\)
\(=6x^2+10x-4\)
c: \(=6x^3y^3+10x^2y^2-2x^2y\)
d: \(=2x^2-3x-2x+3\)
\(=2x^2-5x+3\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(1,\left(2x+1\right)^2+2\left(2x+1\right)+1\\ =\left(2x+1\right)^2+2.\left(2x+1\right).1+1^2\\ =\left[\left(2x+1\right)+1\right]^2\\ b,\left(3x-2y\right)^2+4\left(3x-2y\right)+4\\ =\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\\ =\left[\left(3x-2y\right)+2\right]^2\)
1) \(\left(2x+1\right)^2+2\left(2x+1\right)+1\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\cdot1+1^2\)
\(=\left[\left(2x+1\right)+1\right]^2\)
\(=\left(2x+2\right)^2\)
2) \(\left(3x+2y\right)^2+4\left(3x+2y\right)+4\)
\(=\left(3x+2y\right)^2+2\cdot\left(3x+2y\right)\cdot2+2^2\)
\(=\left[\left(3x+2y\right)+2\right]^2\)
\(=\left(3x+2y+2\right)^2\)