\(\dfrac{1}{2}< \dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{999}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

\(Tacó\)

\(\dfrac{1}{101}>\dfrac{1}{200}\)

\(\dfrac{1}{102}>\dfrac{1}{200}\)

...

\(\dfrac{1}{999}>\dfrac{1}{200}\)

Do đó :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{999}+\dfrac{1}{200}>\dfrac{1}{200}+...+\dfrac{1}{200}=100.\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)

Ta lại có:

\(\dfrac{1}{102}< \dfrac{1}{101}\)

\(\dfrac{1}{103}< \dfrac{1}{101}\)

...

\(\dfrac{1}{200}< \dfrac{1}{101}\)

Do đó : \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{1}{101}.100=\dfrac{100}{101}< 1\)Vậy ...( theo tớ , cậu nên đánh dấu (1) và (2) rồi suy ra ) .. khẳng định trên , học tốt

13 tháng 3 2018

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)

16 tháng 3 2018

Mình nhờ cô giảng bài này rồi nên cũng biết làm.Nhưng mình cũng like để cảm ơn bạn.

29 tháng 3 2017

\(B=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...\dfrac{1}{200}\right)>\dfrac{1}{150}+..\dfrac{1}{150}+\dfrac{1}{200}+..+200=\dfrac{50}{150}+\dfrac{50}{200}=\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{4}{12}+\dfrac{3}{12}=\dfrac{7}{12}\)Vậy ... (ta có điều phải chứng minh )

29 tháng 3 2017

Ta có :\(\dfrac{1}{20}>\dfrac{1}{200}\)

...

\(\dfrac{1}{199}>\dfrac{1}{200}\)

Do đó : \(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+..+\dfrac{1}{200}=\dfrac{181}{200}>\dfrac{180}{200}=\dfrac{9}{10}\)Vậy ...

3 tháng 8 2018

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{150}\)

\(\dfrac{1}{102}>\dfrac{1}{150}\)

....

\(\dfrac{1}{150}=\dfrac{1}{150}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)

Ta có:

\(\dfrac{1}{152}>\dfrac{1}{200}\)

\(\dfrac{1}{153}>\dfrac{1}{200}\)

....

\(\dfrac{1}{200}=\dfrac{1}{200}\)

=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)

=> \(A>\dfrac{7}{12}\)

5 tháng 8 2018

Cảm ơn bạn.

5 tháng 5 2017

a)

Ta thấy:

\(\dfrac{1}{6}< \dfrac{1}{5}\)

\(\dfrac{1}{7}< \dfrac{1}{5}\)

\(\dfrac{1}{8}< \dfrac{1}{5}\)

\(\dfrac{1}{9}< \dfrac{1}{5}\)

\(\dfrac{1}{11}< \dfrac{1}{10}\)

\(\dfrac{1}{12}< \dfrac{1}{10}\)

\(\dfrac{1}{13}< \dfrac{1}{10}\)

...

\(\dfrac{1}{17}< \dfrac{1}{10}\)

\(\Rightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 5\cdot\dfrac{1}{5}+8\cdot\dfrac{1}{10}=1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)

Vậy \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)

5 tháng 5 2017

b)

Ta thấy:

\(\dfrac{1}{101}>\dfrac{1}{300}\)

\(\dfrac{1}{102}>\dfrac{1}{300}\)

\(\dfrac{1}{103}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>200\cdot\dfrac{1}{300}=\dfrac{2}{3}\)

Vậy \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>\dfrac{2}{3}\)

19 tháng 7 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)

\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{10}\)

\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)

\(\Leftrightarrow D< 1\left(đpcm\right)\)

19 tháng 7 2017

Các phần còn lại tương tự như a).

18 tháng 3 2017

Ta thấy:

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{100}< \dfrac{1}{50}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\left(1\right)\)

Lại có:

\(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

...

\(\dfrac{1}{100}=\dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{2}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\)\(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)

8 tháng 4 2017

câu 3 tôi làm đc đó

7 tháng 8 2017

lam sao de viet dc phan so do ban

6 tháng 5 2017

tự xử đi

6 tháng 5 2017

mk ăn mày lun ak