Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{101}{101}-\frac{1}{101}\)
\(A=\frac{100}{101}\)
Chúc bạn học tốt !!!
A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101
A = 1/1 - 1/101
A = 101/101 - 1/101
A = 100/101
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Leftrightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Leftrightarrow A=\frac{1}{3}-\frac{1}{101}\)
\(\Leftrightarrow A=\frac{98}{303}\)
\(Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\)\(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
\(Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(Q=\frac{1}{3}+0+0+0-\frac{1}{11}\)
\(Q=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)
Gọi 2/3.5 +2/5.7 +2/7.9 +...+2/97.99 là A
A=2/3.5 +2/5.7 +2/7.9+...+ 2/97.99
A= 1.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)
A=1.(1/3-1/99)
A=1.32/99
A=32/99
Ta có: A>8/25
=>32/99>8.25
Vậy 2/3.5+2/5.7+2/7.9+...+2/97.99>8/25
k cho mk nha!!!
= 2 . ( \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ ..... + \(\frac{1}{97}\)- \(\frac{1}{99}\)
= 2 . ( \(\frac{1}{3}\)- \(\frac{1}{99}\))
= 2 . \(\frac{2}{3}\)
= \(\frac{4}{3}\)
32% = \(\frac{32}{100}\)= \(\frac{8}{25}\)
\(\frac{4}{3}\)> \(\frac{8}{25}\)=> \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+ \(\frac{2}{7.9}\)+ ..... + \(\frac{2}{97.99}\)> 32%
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}=\frac{800}{2475}\)
\(32\%=\frac{8}{25}=\frac{792}{2475}\)
\(\frac{800}{2475}>\frac{792}{2475}\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}>32\%\)
\(B=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)