K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(\sqrt{5x^2+14x+9}\) chơ

30 tháng 6 2017

kéo xuống xem có nhiều link ko Giải phương trình - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Lời giải:

ĐKXĐ:.............

PT $\Leftrightarrow \sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}$

$\Rightarrow 5x^2+14x+9=x^2+24x+5+10\sqrt{(x^2-x-20)(x+1)}$

$\Leftrightarrow 4x^2-10x+4=10\sqrt{(x^2-x-20)(x+1)}$
$\Leftrightarrow 2x^2-5x+2=5\sqrt{(x+4)(x-5)(x+1)}$

$\Leftrightarrow 2(x^2-4x-5)+3(x+4)=5\sqrt{(x+4)(x^2-4x-5)}$

Đặt $\sqrt{x^2-4x-5}=a; \sqrt{x+4}=b$ với $a,b\geq 0$

Khi đó: $2a^2+3b^2=5ab$

$\Leftrightarrow (a-b)(2a-3b)=0$

$\Rightarrow a=b$ hoặc $a=1,5b$

Đến đây thì đơn giản rồi.

Đáp số: $x=8$ hoặc $x=\frac{5+\sqrt{61}}{2}$

24 tháng 3 2020

ĐK: $x \ geqslant 5$

\(Pt\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)

Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x+5\right)\)

\(\Rightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\left(\circledast\right)\)

Đặt \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\), \(\left(\circledast\right)\) trở thành: \(2u + 3v = 5\sqrt {uv} \Leftrightarrow \left[ \begin{array}{l} u = v\\ u = \dfrac{9}{4}v \end{array} \right.\)

\(\odot u=v\Rightarrow x^2-4x-5=x+4\Leftrightarrow x^2-5x-9=0\)\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{5 + \sqrt {61} }}{2} \text{(nhận)}\\ x = \dfrac{{5 - \sqrt {61} }}{2} \text{(loại)} \end{array} \right.\)

\(\odot\)\(u=\dfrac{9}{4}v\)\( \Rightarrow {x^2} - 4x - 5 = \dfrac{9}{4}\left( {x + 4} \right) \Leftrightarrow 4{x^2} - 25x - 56 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 8 \text{(nhận)}\\ x=\dfrac{{ - 7}}{4} \text{(loại)} \end{array} \right.\)

3 tháng 3 2019

1.ĐK: \(x\ge\dfrac{1}{4}\)

bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)

\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)

\(\Leftrightarrow20x^2-x-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)

2.ĐK: \(-2\le x\le\dfrac{5}{2}\)

bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)

\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)

\(\Leftrightarrow x^2< -x^2+x+6\)

\(\Leftrightarrow-2x^2+x+6>0\)

\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)

3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)

.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)

*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)

*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)

1 tháng 11 2019

ĐK: \(x\ge5\)

Chuyển vế, bình phương ta đc:

\(\sqrt{5x^2+14x+9}=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)

Nhận xét:

Không tồn tại số \(\alpha,\beta\) để: \(2x^2-5x+2=\alpha\left(x^2-x-20\right)+\beta\left(x+1\right)\)

Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x-5\right)\)

PT đc vt lại là: \(2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt: \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\)

Khi đó PT trở thành:

\(2u+3v=5\sqrt{uv}\Leftrightarrow\left[{}\begin{matrix}u=v\\u=\frac{9}{4}v\end{matrix}\right.\)

Xét \(u=v\) ta có PT:

\(x^2-4x-5=x+4\Leftrightarrow x^2-5x+9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\\x=\frac{5-\sqrt{61}}{2}\left(loại\right)\end{matrix}\right.\)

Xét \(u=\frac{9}{4}v\) ta có PT:

\(x^2-4x-5=\frac{9}{4}\left(x+4\right)\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{7}{4}\left(loại\right)\end{matrix}\right.\)

Vậy PT có 2 nghiệm là \(x=8;x=\frac{5+\sqrt{61}}{2}\)

9 tháng 12 2017

lớp 10 học trường mô đây ?

31 tháng 10 2016

x=3 hoặc x=1