Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2
22
+ 222
2222
22222
2 x 5 + 2x 4 x 10 + 2 x 3 x 100 + 2 x 2 x 1000 + 2 x 1 x 10000
2 x (5+4x10+3x100+2x1000+1x10000)
2x [5x100 + (5-1)x101 + (5-2) x102 + (5-3) x103 + (5-4) x104]
Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x (mx100 + (m-1)x101 + (m-2) x102 +……….+2 x 10m-2 + 1x10m-1
Tính tổng trên:
2 x (10x1 + 9x10 + 8x100 + 7x1000 + 6x10000 + 5x100000 + …+ 1x10000000000) =
2 x (10+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000) =
2 x 1234567900 = 2 469 135 800
b, tương tự câu a,
* Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x [m x 100 + (m - 1) x 101 + (m - 2) x102 + ………. +2 x 10m-2 + 1 x 10m-1]
(Bạn nhớ công thức trên sẽ làm đc bài tập 1 cách dễ dàng)
a, A=2+22+222+2222+...+222...2(10 chữ số 2)
Ta có:
A = 2 + 22 + 222 + 2222 + ... + 2222222222
A = 2 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
A = 2 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
A = 2 . 1234567900 = 2 469 135 800
b, B=3+33+333+3333+...+333...3(10 chữ số 3)
Ta có:
B = 3 + 33 + 333 + 3333 + ... + 3333333333
B = 3 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
B = 3 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
B = 3 . 1234567900 = 3 703 703 700.
c, C=5+55+555+5555+...+555...5(5 chữ số 5)
Ta có:
C = 5 + 55+ 555 + 5555 + ... + 5555555555
C = 5 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
C = 5 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
C = 5 . 1234567900 = 6 172 839 500.
Dài quá đó bạn !
1.a) 222333 và 333222
=> (111.2)333 và (111.3)222
=> [(111.2)3]111 và [(111.3)2]111
=> 1113.8 và 1112.9
=> 888.1112 và 1112.9
Vì 888 > 9 => 222333 > 333222
b) 1x8y2 chia hết cho 36
=> 1x8y2 chia hết cho 4 và 9 (vì 36 = 4.9)
1x8y2 chia hết cho 4 => y2 chia hết cho 4 => y = {1;3;5;7;9}
Nếu y = 1 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 1 + 2 chia hết cho 9 => 12 + x chia hết cho 9 => x = 6
Nếu y = 3 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 3 + 2 chia hết cho 9 => 14 + x chia hết cho 9 => x = 4
Nếu y = 5 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 5 + 2 chia hết cho 9 => 16 + x chia hết cho 9 => x = 2
Nếu y = 7 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 7 + 2 chia hết cho 9 => 18 + x chia hết cho 9 => x = {0;9}
Nếu y = 9 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 9 + 2 chia hết cho 9 => 20 + x chia hết cho 9 => x = 7
2.b)S = 30 + 32 + ... + 32002
=> S = (30 + 32 + 34) + ... + (31998 + 32000 + 32002)
=> S = (30 + 32 + 34) + ... + 31998.(30 + 32 + 34)
=> S = 91 + ... + 31998.91
=> S = 91.(1 + ... + 31998) chia hết cho 7
a) S = 30 + 32 + ... + 32002
=> 32S = 32 + 34 + ... + 32004
=> 32S - S = 32 + 34 + ... + 32004 - 30 - 32 - ... - 32002
=> 8S = 32004 - 1
=> S = 32004 - 1/8
a) (-23)+(-25)+(-10)= -(23+25+10)= -58
b) =480
c)= -279
d) =1473
1a) Các phần tử đều cách nhau 5 đơn vị
b) ______________________ 111 đơn vị
c) ______________________ 3 đơn vị
2. A = { 14 ; 23 ; 32 ; 41 ; 50 }
a)2^333 và 3^222
Ta có: 2^333=2^3×111= (2^3)^111=8^111
3^222=3^2×111=(3^2)^111= 9^111
Vì 9>8 nên 8^111<9^111
=> 2^333<3^222
* Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x [m x 100 + (m - 1) x 101 + (m - 2) x102 + ………. +2 x 10m-2 + 1 x 10m-1]
(Bạn nhớ công thức trên sẽ làm đc bài tập 1 cách dễ dàng)
a, A=2+22+222+2222+...+222...2(10 chữ số 2)
Ta có:
A = 2 + 22 + 222 + 2222 + ... + 2222222222
A = 2 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
A = 2 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
A = 2 . 1234567900 = 2 469 135 800
b, B=3+33+333+3333+...+333...3(10 chữ số 3)
Ta có:
B = 3 + 33 + 333 + 3333 + ... + 3333333333
B = 3 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
B = 3 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
B = 3 . 1234567900 = 3 703 703 700.
cho mk hỏi tại sao lại có công thức đó thế, kiến thức lớp mấy vậy bạn