Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 12 + 22 + 32 + ... + 142 + 152 = 1240
102(12 + 22 + 32 + ... + 142 + 152) = 1240.102
102 + 202 + 302 + ... + 1402 + 1502 = 124000 = S
Vậy S = 124000
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
Ta có:
\(S=10^2+20^2+30^2+....+140^2+150^2\)
\(=1^2.10^2+2^2.10^2+3^2.10^2+...+14^2.10^2+15^2.10^2\)
\(=10^2\left(1^2+2^2+3^2+...+14^2+15^2\right)\)
\(=100.1240\)
\(=124000\)
Vậy \(S=124000\)
a) \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(5.3^2\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{5^{10}.3^{20}.5^{20}}{5^{30}.3^{15}}=3^5\)
b) \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=3^2\)
p/s: chúc bạn học tốt
2a) \(\frac{3^6+45^4-15^3.4^5}{27^4.25^3+45^6}\)
= \(\frac{3^6+\left(3^2.5\right)^4-\left(3.5\right)^3.\left(2^2\right)^5}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}\)
= \(\frac{3^6+3^8.5^4-3^3.5^3.4^{10}}{3^{12}.5^6-3^{12}.5^6}=\frac{3^3.\left(3^3+3^5.5^4-5^3.4^{10}\right)}{0}\)(xem lại đề)
b) \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{16}{3}\right)^3:\left(\frac{4}{9}\right)^3}{2^7.5^2+512}\)
= \(\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{16}{3}:\frac{4}{9}\right)^3}{2^7.5^2+2^9}\)
= \(\frac{2^7+12^3}{2^7\left(5^2+2^2\right)}\)
= \(\frac{2^7+\left(2^2.3\right)^3}{2^7.29}\)
= \(\frac{2^7+2^6.3^3}{2^7.29}\)
= \(\frac{2^6\left(1+27\right)}{2^7.29}=\frac{28}{2.29}=\frac{14}{29}\)