K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Ta có : a^2+b^2/c^2+d^2 = ab/cd 
=> (a^2+b^2) . cd = (c^2+d^2). ab 
=> a.a.c.d+b.b.c.d = c.c.a.b + d.d.a.b
=> a.a.c.d-c.c.a.b - d.d.a.b + b.b.c.d= 0
=> ac(ad - bc) - bd(ad - bc) = 0 
=> (ac - bd)(ad - bc) = 0 
=> ac - bd = 0 hoặc ad - bc = 0 
=> ac = bd 
=> a/b =c/d  (đpcm)
 

10 tháng 8 2017

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)

<=>(\(a^2+b^2\))cd=ab(\(c^2+d^2\))

<=>\(a^2cd+b^2cd=abc^2+abd^2\)

<=>\(a^2cd-abc^2-abd^2+b^2cd=0\)

<=>ac(ad-bc)-bd(ad-bc)=0

<=>ac-bd=0

<=>ac=bd

=>\(\dfrac{a}{b}=\dfrac{c}{d}\)

7 tháng 1 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2-b^2}{ab}=\frac{\left(bk\right)^2-b^2}{bk.b}=\frac{b^2.k^2-b^2}{b^2k}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)

\(\frac{c^2-d^2}{cd}=\frac{\left(dk\right)^2-d^2}{dk.d}=\frac{d^2k^2-d^2}{d^2k}=\frac{d^2\left(k^2-1\right)}{d^2.k}=\frac{k^2-1}{k}\left(2\right)\)

Từ (1) và (2)=>\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\).

 

7 tháng 1 2016

phần b đề kiểu gì vậy??//

22 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau

a^2+b^2/c^2+d^2  =   a^2/c^2  =   b^2 / d^2

=>a/c   =    b/d

=>a/b    =    c/d

Chúc bạn học tốt nha

28 tháng 10 2018

dat k ; ta co a= bk , c=dk , roi tu thay vao ma rut gon nhe