K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

\(-2x+4\sqrt{x}+1\)

\(=-2\left(x-2\sqrt{x}+1\right)+3\)

\(=-2\left(\sqrt{x}-1\right)^2+3\le3\left(\forall x\ge0\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

10 tháng 9 2019

 ĐKXĐ :\(x\ge0\)

\(x-4\sqrt{x}+5\)

\(=x-4\sqrt{x}+4+1\)

\(=\left(\sqrt{x}-2\right)^2+1\ge1\forall x\ge0\)

Dấu"=" xả ra <=> \(\left(\sqrt{x}-2\right)^2=0\)

                    \(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

26 tháng 1 2016

b)\(\sqrt{2^3+1}\) theo mình phần b như vậy ko bít đúng ko

26 tháng 1 2016

a)=**** 100%

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

AH
Akai Haruma
Giáo viên
30 tháng 6 2020

Lời giải:

a) ĐK: $x\geq 0$

Với $x\geq 0$ ta thấy $x+\sqrt{x}+5\geq 5$

$\Rightarrow A=\frac{3}{x+\sqrt{x}+5}\leq \frac{3}{5}$

Vậy $A_{\max}=\frac{3}{5}$ khi $x=0$

b) ĐK: $x\geq 0$

Với $x\geq 0$ thì $x+\sqrt{x}+3\geq 3$

$\Rightarrow B=\frac{-5}{x+\sqrt{x}+3}\geq \frac{-5}{3}$

Vậy $B_{\min}=\frac{-5}{3}$ khi $x=0$

2 tháng 10 2016

Đặt \(t=\sqrt{x},t\ge0\)

  • \(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)

Dấu "=" xảy ra khi t = 1 <=> x = 1

B đạt giá trị nhỏ nhất bằng 7 tại x = 1

  • Không tồn tại giá trị lớn nhất.
24 tháng 7 2020

biểu thức B nhận giá trị b khi phương trình sau có nghiệm \(b=\frac{x+2y+1}{x^2+y^2+7}\)

\(\Leftrightarrow bx^2-x+by^2-2y+7y-1=0\left(2\right)\)

trong đó x là ẩn, y là tham số và b là tham số có điều kiện

nếu b=0 => x+2y+1=0

nếu b \(\ne\)0 để (2) có nghiệm x khi 1-4b(by2-2y+7b-1) >= 0 (3)

coi (3) là bất phương trình ẩn y. bất phương trình này xảy ra với mọi giá trị của y khi 16b2+4b2(-28b2+4b+1) >=0

<=> -28b2+4b+5 >=0 \(\Leftrightarrow-\frac{5}{14}\le b\le\frac{1}{2}\)

vậy minB=-5/14 khi \(x=-\frac{7}{5};y=-\frac{14}{5}\)

maxB=1/2 khi x=1;y=2

\(A=\sqrt{x-4}-2>=-2\)

Dấu = xảy ra khi x=4

\(B=-\sqrt{x-1}+\sqrt{3}< =\sqrt{3}\)

Dấu '=' xảy ra khi x=1