Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)
\(\RightarrowĐPCM\)
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z
=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz
=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)
=�+��+1��+�+1=xy+x+1x+xy+1
=1=1
a) \(4x^2-2x+1\)
\(=\left(2x\right)^2-2.2x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(2x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
Vậy biểu thức trên luôn dương với mọi x
b) \(x^4-3x^2+9\)
\(=\left(x^2\right)^2-2.x^2.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+9\)
\(=\left(x^2-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(x^2-\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\) với mọi x
Vậy biểu thức trên luôn dương với mọi x
c) \(x^2+3x+3\)
\(=x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+3\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{3}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
Vậy biểu thức trên dương với mọi x
d) \(2x^2+4x+1\)
\(=2\left(x^2+2x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+2x+1-1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2-1\)
... Đề sai?
Bài 1 :
Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy \(GTNN\) của \(A\) là \(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Bài 2 :
Câu a : \(x^2-6x+y^2-4y+13=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy \(x=3\) and \(y=2\)
Câu b : \(4x^2-4x+y^2+6y+10=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)
Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2}\) và \(y=-3\)
x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x
Giải:
a) Ta có:
\(A=x\left(x-6\right)+10\)
\(\Leftrightarrow A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-6x+9+1\)
\(\Leftrightarrow A=\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0;\forall x\)
\(\left(x-3\right)^2+1\ge1;\forall x\)
Hay \(A\ge1;\forall x\)
\(\Leftrightarrow A>0;\forall x\)
Vậy A luôn luôn nhận giá trị dương với mọi x.
b) Ta có:
\(B=x^2-2x+9y^2-6y+3\)
\(B=x^2-2x+9y^2-6y+1+1+1\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\forall x\) và \(\left(3y-1\right)^2\ge0;\forall y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0;\forall x,y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1;\forall x,y\)
Hay \(B\ge1;\forall x,y\)
\(\Leftrightarrow B>0;\forall x,y\)
Vậy B luôn luôn nhận giá trị dương với mọi x, y.
A = x(x - 6) + 10
= x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x2 - 6x + 9) + 1
= (x - 3)2 + 1
Vì (x - 3)2 \(\ge\) 0 với mọi x
=> (x - 3)2 + 1 > 0 với mọi x
Vậy A = = x(x - 6) + 10 luôn dương với mọi x
B = x2 - 2x + 9y2 - 6y + 3
= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1
= (x - 1)2 + (3y - 1)2 +1
Vì (x - 1)2 \(\ge\) 0 với mọi x
(3y - 1)2 \(\ge\) 0 với mọi y
=> (x - 1)2 + (3y - 1)2 \(\ge\) 0 với mọi x, y
=> (x - 1)2 + (3y - 1)2 +1 > 0 với mọi x, y
Vậy B = x2 - 2x + 9y2 - 6y + 3 luôn dương với mọi x, y
Chúc bạn học tốt!
a) Ta có: x2 + 4x +5 = ( x2 + 4x + 4 ) +1 = (x+2)2 + 1 >= 1 >0 với mọi x
b) Ta có : 4x2 - 4x +2 = ( 4x2 - 4x +1 ) + 1 = (2x+1)2 > 0 với mọi x
c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )2 + 7/4 >0 với mọi x
mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số
a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0
b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0
c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75 > 0
d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75 > 0
e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75 > 0
\(4x^2+2x+1\)
\(=\left[\left(2x\right)^2+2.2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Có:\left(2x+\frac{1}{2}\right)^2\ge0\)\(\text{với mọi x}\)
\(\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)\(\text{với mọi x}\)
\(\text{Vậy 4x^2}+2x+1\)\(\text{luôn dương với mọi x}\)
a) -x2+ 4x -9
=-x2+4x-4-5
= -(x2-4x+4)-5
= -(x-2)2-5
do -(x-2)2 ≤ 0 ∀x
=> -(x-2)2 -5 ≤ -5 ∀x
hay -x2+ 4x -9 ≤ -5 ∀x (đpcm)
b. x2 -2x +9
= x2-2x+1+8
= (x-1)2+8
do (x-1)2 ≥ 0 ∀x
=> (x-1)2 +8 ≥ 8 ∀x
hay x2 -2x +9 ≥ 8 ∀x (đpcm)