K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

a) Kẻ BKACBK⊥AC

Ta được: ˆKBC=60KBC^=60∘ˆKBA=60=6038=22KBA^=60∘=60∘−38∘=22∘

Xét tam giác KBC vuông tại K có:

BK=BCsinC=11sin30=5,5(cm)BK=BC⋅sinC=11⋅sin30∘=5,5(cm)

Xét tam giác KBA vuông tại K có:

AB=BKcos22=5,5cos225,932(cm).AB=BKcos22∘=5,5cos⁡22∘≈5,932(cm).

Xét tam giác ABN vuông tại N có:

AN=ABsin385,932sin383,652(cm)AN=AB⋅sin38∘≈5,932⋅sin38∘≈3,652(cm)

b) Xét tam giác ANC vuông tại N có AC=ANsinC

3 tháng 8 2023

loading...

Trong tam giác vuông \(\text{ABN}\) ta có

\(\text{AN = AB.sinB}\) \(\text{= 11.sin38° ≈ 6,772 (cm)}\)

Trong tam giác vuông \(\text{ACN }\)ta có

\(\text{AC =}\) \(\dfrac{\text{AN}}{\text{sin}\widehat{\text{C}}}\) \(\approx\) \(\dfrac{\text{6,772}}{\text{sin30}^{\text{o}}}\) \(\text{= 13,544 ( cm )}\)

góc BAC=180-38-30=150 độ-38 độ=112 độ

Xét ΔABC có

AB/sin C=AC/sin B=BC/sin A

=>11/sin 30=AC/sin 38=BC/sin112

=>\(AC\simeq13,54\left(m\right);BC\simeq20,4\left(m\right)\)

Xét ΔANB vuông tại N có

\(AN=AB\cdot sinB\)

=>\(AN=11\cdot sin38\simeq6,77\left(m\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot13.54\cdot11\cdot sin112\simeq69,05\left(m^2\right)\)

20 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ABN, ta có:

AN = AB.sinB

= 11.sin 38 °  ≈ 6,772 (cm)

Trong tam giác vuông ACN, ta có:

AC = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

= 13,544 (cm)

11 tháng 9 2017

mik làm bn nha!

11 tháng 9 2017

tam giac abc vuong ư

27 tháng 3 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ BK ⊥ AC (K ∈ AC).

Trong tam giác vuông BKC có:

∠ K B C   =   9 ° o   –   30 °   =   60 ° = >   ∠ K B A   =   60 °   –   38 °   =   22 °

BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )

Xét tam giác ABK vuông tại K:

 Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét tam giác ANB vuông tại N:

 Để học tốt Toán 9 | Giải bài tập Toán 9

=> AN = ABsinABN = 5,93.sin38° ≈ 3,65(cm)

b) Xét tam giác ANC vuông tại N:

 Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

28 tháng 9 2018

kẻ BK vuongAC ^CBK vuong tai K và ^C = 30 độ  = > tam giácCBK nửa đều BK = BC/2 = 5,5 ^KBC = 180-(BKA+^C) = 60độ ^KBA = ^KBC-^ABC = 22 độ  = >tam giác KBA có KBA = 22 độ  = >AB = BK:sinKBA = 5,5:sin22 = 5,93194 AN = AB.sinABN = 3,65207 b) AC = 2AN = 7,30414

16 tháng 8 2020

38 38 o o A B C K N

Kẻ \(BK\perp AC\left(K\in AC\right)\)

Trong tam giác vuông BKC có:

 \(\widehat{KBC}=60^o-30^o=60^o\)

 \(\Rightarrow\widehat{KBA}=60^o-38^o=22^o\)

BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )

Xét tam giác ABK vuông tại K : \(\cos KBA=\frac{BK}{AB}\)

\(\Rightarrow AB=\frac{BK}{\cos KBA}=\frac{5,5}{\cos22^o}\approx5,93\left(cm\right)\)

Xét tam giác ANB vuông tại N : \(\sin ABN=\frac{AN}{AB}\)

\(\Rightarrow AN=AB\sin ABN=5,93.\sin38^o\approx3,65\left(cm\right)\)

b) Xét tam giác ANC vuông tại N : \(\sin ACN=\frac{AN}{AC}\)

\(AC=\frac{AN}{\sin ACN}\approx\frac{3,65}{\sin30^o}\approx7,3\left(cm\right)\)

Xét ΔANB vuông tại N có 

\(AN=AB\cdot\sin B\)

nên \(AN\simeq6,772\left(cm\right)\)

XétΔACN vuông tại N có 

\(AC=\dfrac{AN}{\sin C}=13,544\left(cm\right)\)

a: ΔANB vuông tại N

=>tan B=AN/NB

=>AN=NB*tan38

ΔANC vuông tại N

=>AN=NC*tan30

=>NB*tan38=NC*tan30

=>NB/NC=tan30/tan38\(\simeq0,74\)

=>NB=0,74NC

mà NB+NC=11

nên \(NB\simeq4,68\left(cm\right);NC\simeq6,32\left(cm\right)\)

AN=NC*tan30=6,32*tan30\(\simeq3,65\left(cm\right)\)

b: góc BAC=180-38-30=180-68=112 độ

Xét ΔABC có BC/sinA=AC/sinB

=>\(AC=\dfrac{11}{sin112}\cdot sin38\simeq7,3\left(cm\right)\)