Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B\backslash A=\left\{1;3;4\right\}\)
Tập X được tạo ra bằng cách lấy hợp của tập \(B\backslash A\) với các tập con của A
Mà tập A có \(2^2=4\) tập con nên có 4 tập X thỏa mãn
\(B\backslash A=\left\{d;e\right\}\)
Tập X thỏa mãn \(A\subset X\subset B\) khi X là hợp của A và các tập con của \(B\backslash A\)
Mà \(B\backslash A\) có \(2^2=4\) tập con nên có 4 tập X thỏa mãn
\(11-3x>0\Leftrightarrow x< \frac{11}{3}\Rightarrow A=\left\{0;1;2;3\right\}\)
\(B=\left\{-3;-2;-1;0;1;2;3\right\}\)
\(A\cup B=B=...\)
\(A\cap B=A=...\)
\(C_BA=\left\{-3;-2;-1\right\}\)
\(A\backslash B=\varnothing\)
\(B\backslash A=\left\{-3;-2;-1\right\}\)
\(X=A;\left\{-3;0;1;2;3\right\};\left\{-2;0;1;2;3\right\};\left\{-1;0;1;2;3\right\}\) ; \(\left\{-3;-2;0;1;2;3\right\};\left\{-3;-1;0;1;2;3\right\};\left\{-2;-1;0;1;2;3\right\};B\)
Do A⊂BA⊂B nên nếu X⊂A⇒X⊂BX⊂A⇒X⊂B
Do đó ta chỉ cần tìm tập còn của tập A
Tập con của A gồm: ∅;{1};{2};{1;2}∅;{1};{2};{1;2} có 4 tập thỏa mãn
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
a, \(X\in\left\{a;b\right\},\left\{a;b;c\right\},\left\{a;b;d\right\},\left\{a;b;e\right\},\left\{a;c;d\right\},\left\{a;c;e\right\},\left\{a;d;e\right\},\left\{a;b;c;d\right\},\left\{a;b;c;e\right\},\left\{a;c;d;e\right\},\left\{a;b;c;d;e\right\}\)
b,
\(X=\left\{3;4;5\right\}\)
c,đề có sai hay sao ý ạ
\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
\(C_BA=\left\{2;3;4\right\}\)
Tập \(C_BA\) có \(2^3=8\) tập con nên có 8 tập X thỏa mãn