Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
\(A=x^2+3xy+6x+5y^2+7y-2\)
\(=\left[x^2+2x\left(3+\dfrac{3}{2}y\right)+\left(3+\dfrac{3}{2}y\right)^2\right]+5y^2+7y-2-\left(3+\dfrac{3}{2}y\right)^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+5y^2+7y-2-9-9y-\dfrac{9}{4}y^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}y^2-2y-11\)
\(=\left(x+3+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\left(y^2-\dfrac{8}{11}y+\dfrac{16}{121}\right)-\dfrac{125}{11}\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}\left(x-\dfrac{4}{11}\right)^2-\dfrac{125}{11}\ge\dfrac{-125}{11}\)Vậy \(Min_A=\dfrac{-125}{11}\) khi \(\left[{}\begin{matrix}x+3+\dfrac{3}{2}y=0\\x-\dfrac{4}{11}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{74}{33}\\x=\dfrac{4}{11}\end{matrix}\right.\)
Biết số nhọ nhưng vẫn làm tiếp:)
\(2,x^4+3x^2+2x+2=\left(x^4+2x^2+1\right)+\left(x^2+2x+1\right)=\left(x^2+1\right)^2+\left(x+1\right)^2>0\left(đpcm\right)\)
\(b,x^2+y^2+z^2+xy+yz+zx\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(y^2+2yz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\ge0\)
Đúng với mọi x , y ,z
c,\(x^2+y^2+xy+x+y+1\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+xy+y+x+1\right)\ge0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\ge0\)
Đúng với mọi x , y
C2 là = 8xyz nha mình viết nhầm
Câu 2:
\(\left\{{}\begin{matrix}y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\\x+y>=2\sqrt{xy}\end{matrix}\right.\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z