K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(a,4x+4y\)

\(=4\left(x+y\right)\)

b,\(2xy-y^2+2x-y\)

\(=\left(2xy+2x\right)-\left(y^2+y\right)\)

\(=2x\left(y+1\right)-y\left(y+1\right)\)

\(=\left(y+1\right)\left(2x-y\right)\)

\(c,2x^3y-8x^2y^2+8xy^3\)

\(=2xy\left(x^2-4xy+4y^2\right)\)

\(=2xy\left(x^2-2.x.2y+\left(2y\right)^2\right)\)

\(=2xy\left(x-2y\right)^2\)

8 tháng 10 2017

Bai 2:

\(a,x^2-81=0\)

\(\Rightarrow x^2-9^2=0\)

\(\Rightarrow\left(x-9\right)\left(x+9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x+9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

\(b,x^2+x-6=0\)

\(\Rightarrow x^2+3x-2x-6=0\)

\(\Rightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Rightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

12 tháng 8 2017

3a) x2 (x-1) - 4x2 + 8x - 4

= x2(x-1) - ( 2x - 2)2

= (x\(\sqrt{x-1}\))2 -( 2x - 2)2

= (x\(\sqrt{x-1}\)- 2x+2) ( x\(\sqrt{x-1}\)+ 2x - 2)

12 tháng 8 2017

3b)   = x3 +33 + (x+3) (x-9)

        = (x + 3)( x2 - 3x + 9) + (x+3)(x-9)

        = (x+3)(x2 -2x)   = (x + 3)(x - 2)x

a: \(2x^3+x^2-13x+6\)

\(=2x^3-4x^2+5x^2-10x-3x+6\)

\(=\left(x-2\right)\left(2x^2+5x-3\right)\)

\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)

b: \(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)

=>x-2=0 và x+y-1=0

=>x=2 và y=-1

25 tháng 10 2018

1) a) \(x^3-2x^2y+xy^2-25x=x\left(x^2-2xy+y^2-25\right)\)

   \(=x\left[\left(x-y\right)^2-5^2\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

b)\(x^2-y^2-2x-2y=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1-y-1\right)\left(x-y+y+1\right)=\left(x-y-2\right)\left(x+1\right)\)

25 tháng 10 2018

Câu c sửa mũ 2 thành mũ 4 giúp mk nhé

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

9 tháng 8 2017

a) 4x2-8x=0

   (2x)2-2.2.2x+4-4=0

  (2x-2)2 =4

   2x-2=2

   2x  =4

    x=2

Nhớ k cho mk nha