Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A= \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)
\(=a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{c+a}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)\)
\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{c+a}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)
\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\) =0
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)
\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)
Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)
Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)
a,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)
\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-1\right).2x}{2x\left(x-1\right)\left(x+1\right)}-\frac{2.2\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{3x-3}{2x\left(x+1\right)\left(x-1\right)}+\frac{4x^2-2x}{2x\left(x-1\right)\left(x+1\right)}-\frac{4x^2-4}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{3x-3+4x^2-2x-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)
\(b,\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)
\(=\frac{3x.2\left(x-y\right)}{10\left(x+y\right).\left(x-y\right)}-\frac{x.\left(x+y\right)}{10\left(x-y\right).\left(x+y\right)}\)
\(=\frac{6x^2-6xy}{10\left(x+y\right)\left(x-y\right)}-\frac{x^2+xy}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{6x^2-6xy-x^2+xy}{10\left(x+y\right)\left(x-y\right)}\)
\(=\frac{5x^2-5xy}{10\left(x+y\right)\left(x+y\right)}\)
\(=\frac{5x\left(x-y\right)}{10\left(x-y\right)\left(x+y\right)}=\frac{x}{2\left(x+y\right)}\)
tìm a,b,c biết rằng P(x) = x^3 + ax^2 +bx + c chia hết cho x-2 và chia x^2 -1 dư 2x
GIÚP MÌNH NHA!...
Theo đề bài: ab+bc+ca=0
=> \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}=0\)(chia 2 vế cho abc)
<=> \(\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}=3\cdot\frac{1}{abc}\)(1)
( Áp dụng tính chất x+y+z=0 suy ra \(x^3+y^3+z^3=3zxy\)- Bạn tự Cm)
Ta có: P=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\)\(\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)(2)
Từ (1)(2)=> P=abc\(\cdot3\cdot\frac{1}{abc}\)=3