Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\frac{1985.1987-1}{1980+1985.1986}=\frac{1985.\left(1986+1\right)-1}{1980+1985.1986}=\frac{1985.1986+1985-1}{1980+1985.1986}=\frac{1985\cdot1986+1984}{1980+1985.1986}\)ta thấy ở tử và mẫu có 1985.1986 là bằng nhau mà tử được cộng với 1984 mà mẫu cộng với 1980.Do 1984>1980=>A>1
Cả 2 bạn đều làm đúng nhưng đáng tiếc là câu trả lời của Nguyễn Quang Thành chưa thỏa đáng nên không được chọn!!!
Đặt tử A là T ta có:
5T=5(1+5+52+...+59)
5T=5+52+...+510
5T-T=(5+52+...+510)-(1+5+52+...+59)
T=(510-1)/4
Mẫu A là H tính tương tự đc:(59-1)/4.Thay vào ta có:\(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}\)
B tính tương tự A được \(\frac{3^{10}-1}{3^9-1}\) tới đây sao nx
\(A=\left(1985\cdot1987-1\right):\left(1980+1985\cdot1986\right)\)
\(A=3944194\div3944190\)
ko chia hết nên sẽ bằng 1,4 lớn hơn 1
\(\Rightarrow A>1\)
1985x1987-1/1980+1985x1986=1985x1986+1985-1/1980+1985x1986
=1985x1986+1984/1980+1985x1986.Vì 1985x1986+1984>1980+1985x1986
suy ra 1985x1987-1/1980+1985x1986>1
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
\(\hept{\begin{cases}3^{2n}=9^n\\2^{3n}=8^n\end{cases}}\)
nếu n=0\(\Rightarrow\hept{\begin{cases}9^n=9^0=1\\8^n=8^0=1\end{cases}\Rightarrow9^n=8^n}\)
nếu n>0\(\Rightarrow9^n>8^n\)
vậy \(3^{2n}\ge2^{3n}\)
\(\frac{1985.1987-1}{1980+1985.1986}=\frac{3944194}{3944190}\)
\(\frac{3944194}{3944190}>1\)
=> \(\frac{1985.1987-1}{1980+1985.1986}>1\)
chả hỉu gì cả
Ta có:\(\frac{1985x1987-1}{1980+1985x1986}=\frac{1985x1986+1985-1}{1985x1986+1980}=\frac{1985x1986+1984}{1985x1986+1980}>1\)
=>\(\frac{1985x1987-1}{1985x1986+1980}>1\)