Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)=vậy\(\frac{2014}{2015}+\frac{2015}{2014}>\frac{666665}{333333}.\)
bạn nhé
Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)
Khi đó \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
Bạn xem lời giải của mình nhé:
Giải:
Bài 2:
Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)
Chúc bạn học tốt!
b)
Gọi 3 số đó là : a) b) c)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên
Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6
a)
\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)
\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)
\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)
\(A=\frac{26433}{1680}\)
Vậy \(A=\frac{26433}{1680}\)
\(A=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2013}{2014}\right)=\left(-\frac{1}{2014}\right)\) (Do các thừa số đều âm và A có (2014-2)+1=2013 thừa số nên A mang giá trị âm)
\(B=-\frac{1}{2015}\)
=> A<B (|A|>|B|)
\(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{2013^2-1}{2013^2}.\frac{2014^2-1}{2014^2}\)
\(A=\frac{1.3.2.4.3.5....2012.2014.2013.2015}{2^2.3^2.4^2...2013^2.2014^2}\)
\(A=\frac{\left(1.2.3...2012.2013\right).\left(3.4.5...2014.2015\right)}{\left(2.3.4...2013.2014\right).\left(2.3.4...2013.2014\right)}\)(nhóm từng số ở trước và sau vào 2 nhóm khác nhau)
\(A=\frac{3.2015}{2014.2}\)
\(A=\frac{6045}{4028}\)
\(A=\frac{6045}{4028}\),nha bạn ,chúc bạn hok tốt ,love bạn nhìu ,cách làm giống như Monozono Nanami nha
NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)
NÊN tích dãy số đó là 0
tk nha
\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có :
\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)
\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)
\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)
\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)
Mà :
\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)
\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)
Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế )
\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 )
\(\Rightarrow\)\(A>3\) ( điều phải chứng minh )
Vậy \(A>3\)
Chúc đệ học tốt ~
c,
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)
vì \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.............................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
bt lm mỗi một câu :v
,mình sửa lại đề:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)
xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015
=\(\frac{2013}{2013}\)
=\(1\)
vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
Ta có :
\(\frac{666665}{333333}< \frac{666666}{333333}=2\text{ hay }\frac{666665}{333333}=2-\frac{1}{333333}\)
Lại có :
\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)
\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2-\frac{1}{4058210}\)
Vì \(\frac{1}{333333}>\frac{1}{4058210}\Rightarrow2-\frac{1}{333333}< 2-\frac{1}{4058210}\)
\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)
Mình nhầm xíu :
Ta có :
\(\frac{666665}{333333}< \frac{666666}{333333}=2\)
Lại có :
\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)
\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2+\frac{1}{4058210}>2\)
\(\text{VÌ }\frac{666665}{333333}< 2< \frac{2014}{2015}+\frac{2015}{2014}\)
\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)