Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b ) \(a^6-b^3=\left(a^2\right)^3-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
c ) \(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
d ) \(8z^3+27=\left(2z\right)^3+3^3=\left(2z+3\right)\left(4z^2-6z+9\right)\)
a) x3 + 8y3 = x3 + (2y)3 = (x+2y)(x2+2xy+4y2)
b) a6 - b3 = (a2)3 - b3 = (a2-b)(a4 + a2b + b2)
c) 8y3 - 125 = (2y)3 - 53 = (2y - 5)(4y2 + 10y + 25)
d) 8x3 + 27 = (2z)3 + 33 = (2z + 3)(4z2 - 6x + 9)
Bạn sai đề rồi :
a ) \(8y^3-125\)
\(=\left(2y\right)^3-5^3\)
\(=\left(2y-5\right)\left(4y^2+2y.5+5^2\right)\)
\(=\left(2y-5\right)\left(4y^2+10y+25\right)\)
b) Ta thấy \(8z^3=\left(2z\right)^3\)còn \(27=3^3\)
Trở thành : \(\left(2z\right)^3+3^3\)
Rồi bạn bạn tự làm nha
Thanks
1) a) \(x^3-2x^2y+xy^2-25x=x\left(x^2-2xy+y^2-25\right)\)
\(=x\left[\left(x-y\right)^2-5^2\right]=x\left(x-y-5\right)\left(x-y+5\right)\)
b)\(x^2-y^2-2x-2y=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-1-y-1\right)\left(x-y+y+1\right)=\left(x-y-2\right)\left(x+1\right)\)
\(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-2y+3\right)\)
\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
\(12x^2y-18xy^2-3xy^2=3xy\left(4x-6y-y\right)\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(y\left(x-z\right)+7\left(z-x\right)=y\left(x-z\right)-7\left(x-z\right)=\left(x-z\right)\left(y-7\right)\)
\(27x^2\left(y-1\right)-9x^3\left(1-y\right)=27x^2\left(y-1\right)+9x^3\left(y-1\right)=9x^2\left(y-1\right)\left(3-x\right)\)
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
a: \(2x^3+x^2-13x+6\)
\(=2x^3-4x^2+5x^2-10x-3x+6\)
\(=\left(x-2\right)\left(2x^2+5x-3\right)\)
\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)
b: \(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)
=>x-2=0 và x+y-1=0
=>x=2 và y=-1
\(a,x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
\(b,27-8y^3=\left(3-2y\right)\left(9+6y+4y^2\right)\)
\(c,y^6+1=\left(y^2\right)^3+1=\left(y^2+1\right)\left(y^4-y^2+1\right)\)
\(d,64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)
\(e,125x^6-27y^9=\left(5x^2\right)^3-\left(3y^3\right)^3=\left(5x^2-3y^3\right)\left(25x^4+15x^2y^3+9y^9\right)\)
\(g,16x^2\left(4x-y\right)-8y^2\left(x+y\right)+xy\left(16+8y\right)\)
\(=8\left[2x^2\left(4x-y\right)-y^2\left(x+y\right)\right]+8xy\left(2+y\right)\)
\(=8\left(8x^3-2x^2y-xy^2-y^3+2xy+xy^2\right)\)
\(f,-\dfrac{x^6}{125}-\dfrac{y^3}{64}=-\left[\left(\dfrac{x^2}{5}\right)^3+\dfrac{y^3}{4^3}\right]=-\left(\dfrac{x^2}{5}+\dfrac{y}{4}\right)\left(\dfrac{x^4}{25}-\dfrac{x^2y}{20}+\dfrac{y^2}{16}\right)\)
\(a,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(b,a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(c,8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(d,8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
\(a)x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(b)a^6-b^3=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(c)8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(d)8z^3+27=\left(2z\right)^3+3^3=\left(2x+3\right)\left(4z^2-6z+9\right)\)