Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Trong \(\Delta\) ABH có AHB=900 (BH \(\perp\) BC tại H -gt)
AH2 + BH2 =AB2 (định lý Pi-ta-go)
T/s:162 +252 =AB2
\(\Rightarrow\) AB2 =881
mà AB>0
\(\Rightarrow\) AB=\(\sqrt{881}\)\(\approx\) 29.68
Trong\(\Delta\) ABC có BAC=900 (gt), Đường cao AH (gt)
AH2= BH*CH (hệ thức lượng)
T/s: 162=25*CH
\(\Rightarrow\) CH=\(\dfrac{16^2}{25}\) = 10.24
Có:BH+HC=BC(H\(\in\) BC)
T/s: 25+10.24=BC
\(\Rightarrow\) BC=35.24
Trong \(\Delta\) ABC có:BAC=900 (GT)
AB2 +AC2 =BC2(Định lý Py-ta-go)
T/s:29.682+AC2\(\approx\)35.242
\(\Rightarrow\) AC2\(\approx\)35.242-29.682
\(\approx\)360.95
Mà AC>0
\(\Rightarrow\) AC\(\approx\) 19
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều