Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, yx2+yx+y=1
=> y(x2+x+1)=1
=>\(y=\frac{1}{x^2+x+1}\)
Vì y là số nguyên dương => 1\(⋮\)x2+x+1
=> x2+x+1=1(vì x>0)
=> vô nghiệm
Vậy không có nghiệm nguyên dương t/m pt
\(y=\frac{x^3-x^2+2x+7}{x^2+1}=x-1+\frac{x+8}{x^2+1}\)
Đặt
\(A=\frac{x+8}{x^2+1}\)
\(\Leftrightarrow\left(x-8\right)A=\frac{x^2-64}{x^2+1}=1-\frac{65}{x^2+1}\)
Để A nguyên thì \(x^2+1\)phải là ước của 65. Làm nốt
5)
a)
Có 3x+y = 1
\(\Rightarrow x+x+x+y=1\)
Áp dụng bất đẳng thức bunhiacopxki ta có :
\(\left(x^2+x^2+x^2+y^2\right)\left(1^2+1^2+1^2+1^2\right)\ge\left(x+x+x+y\right)^2\)
\(\Rightarrow3x^2+y^{2^{ }}.4\ge\left(3x+y\right)^2\)
\(\Rightarrow3x^2+y^2\ge\dfrac{1}{4}\)
b)
Áp dụng bất đẳng thức AM - GM ta có :
\(\left[{}\begin{matrix}a^2+1^2\ge2a\\b^2+1^2\ge2b\\c^2+1^2\ge2c\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a+1\right)^2\ge4a^{ }\\\left(b+1\right)^2\ge4b^{ }\\\left(c+1\right)^2\ge4c^{ }\end{matrix}\right.\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a^{ }.4b.4c^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64a^{ }bc^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64abc\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64\)
\(\Rightarrow\left(a+1\right)^{ }\left(b+1\right)^{ }\left(c+1\right)^{ }\ge8\) \(\left(đpcm\right)\)
3)
Sửa đề \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
Đặt b + c - a = x , a+c-b = y , a+b-c= z
\(\Rightarrow\left[{}\begin{matrix}2a=y+z\\2b=x+z\\2c=x+y\end{matrix}\right.\)
Có :
\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
\(\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
\(\Rightarrow\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)
Áp dụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)
\(\Rightarrow\) \(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)
\(\Rightarrow2\left(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\right)\ge6\)
\(\Rightarrow\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\) \(\left(đpcm\right)\)
mk lm phàn 2 nha.Bạn có thể sử dụng miền gtrị hàm để tìm GTLN(phàn này chỉ làm nháp thôi)
Gọi m là 1 giá trị của bt \(\frac{x^2+x+1}{x^2-x+1}\)
Ta có m= \(\frac{x^2+x+1}{x^2-x+1}\)<=> m(x2-x+1)=x2+x+1
<=> mx2-mx+m-x2-x-1=0
<=>(m-1)x2-(m+1)x+m+1=0(1) (chú ý đối vs pt bậc:ax2+bx+c=0.pt có \(\Delta=b^2-4ac\)Nếu \(\Delta\ge0\Rightarrow\)pt có 2 nghiệm.Nếu \(\Delta< 0\)pt vô nghiệm)
Nếu m=0......(th này ko cần xét)
Nếu m \(\ne0\)pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)
<=> (m+1)2-4(x-1)2\(\ge0\)
<=>m2+2m+1-4(m2-2m+1)\(\ge0\)
<=>-3m2+10m-3\(\ge0\)
<=>3m2-10m+3\(\le0\)(phân tích đa thức thành ntử
....<=> (m-3)(3m-1)\(\le0\)<=>\(\frac{1}{3}\le m\le3\)
=>GTLN là 3
bài làm
Dặt A= \(\frac{x^2+x+1}{x^2-x+1}=\frac{3x^2-3x+3-2x^2+4x-2}{x^2-x+1}\)
\(=\frac{3\left(x^2-x+1\right)-2\left(x^2-2x+1\right)}{x^2-x+1}=3-\frac{\left(x-1^2\right)}{x^2+x+1}\)
do \(\frac{\left(x-1\right)^2}{x^2-x+1}\ge0\Rightarrow3-\frac{\left(x-1\right)^2}{x^2-x+1}\le3\)
=>MaxA=3 <=> x-1=0
<=> x=1
Vậy.......
tk mk nha
có gì ko hiểu bn nhắn tin bảo mk kèm theo link này nha
https://olm.vn/hoi-dap/detail/205014689694.html
Đặt \(A=\dfrac{1}{B}=\dfrac{1+x^4}{x^2}=\dfrac{1}{x^2}+x^2\ge2\sqrt{\dfrac{1}{x^2}.x^2}=2\)
Do \(A=\dfrac{1}{B}\ge2\Rightarrow B\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(x^2=\dfrac{1}{x^2}\Leftrightarrow x=1\)
Vậy \(B_{max}=\dfrac{1}{2}\Leftrightarrow x=1\)
Easy nhở?
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)
..........
\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)
\(\Leftrightarrow\)\(x=-2040\)
Vậy phương trình có nghiệm là : x = -2040
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Ta có:
\(B=\dfrac{x^2}{x^4+1}\)
\(2B-1=\dfrac{2x^2-x^4-1}{x^4+1}\)
\(2B-1=\dfrac{-\left(x^2-1\right)^2}{x^4+1}\)
Ta có:
\(\dfrac{-\left(x^2-1\right)}{x^4+1}\le0\)
\(\Rightarrow2B-1\le0\)
\(\Leftrightarrow B\le\dfrac{1}{2}\)
dấu "=" xảy ra khi
\(x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Còn ý a thì sao