Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\)(giả thiết)
\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))
\(BD\)cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c)
\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng)
\(\Rightarrow DE\perp BC\).
a, Xét ΔΔABE và ΔΔACD có :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> ΔΔABE = ΔΔACD (c.g.c)
=> BE=CD ( 2 cạnh tương ứng)
b,vì tam giác MBD= tam giác MEC:
=> DM=EM ( 2 cạnh đồng vị)
XÉt tam giác AMD và tam giác AME
AD =AE ( Gt)
DM=EM ( CMT)
AM cạnh chung
=> tam giác AMD=AME ( c.c.c )
chúc bạn học tốt
Bài làm ( Bạn chú ý vẽ hình ra nha , mình ngại làm )
a)+) Xét tam giác ADE có : AD = AE ( GT )
=> ADE là tam giác cân tại A ( định nghĩa )
=> Góc ADE = \(\frac{180^o-\widehat{A}}{2}\left(1\right)\)
+) Vì ABC cân tại A
\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) => Góc ADE = Góc ABC
Mà 2 góc này ở vị trí đồng vị
=> DE // BC ( ĐPCM )
b) Ta có :
AD + DB = AB
AE + EC = AC
Mà AD = AE ; AB = AC
=> DB = EC
Xét tam giác MBD và tam giác MCE có :
DB = EC
Góc DBM = góc ECM ( tam giác ABC cân tại A )
BM = MC ( M là trung điểm của BC )
=> TAm giác MBD = tam giác MCE ( c . g . c )
c) Xét tam giác AMD bà tam giác AME có :
AD = AE
AM : cạnh chung
DM = EM ( tam giác MBD = tam giác MCE )
=> tam giác AMD = tam giác AME ( c.c.c )
xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ
mà góc CDB+ góc ACB=90 độ
suy ra góc DBC =90 độ
suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)
Áp dụng hệ thức lượng vào tam giác DBC ta có:
1/BC^2+1/BD^2=1/AB^2( ĐPCM)
ABCDEN
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)