K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

a) \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}\)

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)

\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\)

\(2A=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+...+\left(\frac{1}{100}-\frac{1}{102}\right)\)

\(2A=\frac{1}{2}-\frac{1}{102}\)

\(2A=\frac{25}{51}\)

\(A=\frac{25}{51}:2\)

\(A=\frac{25}{102}\)

Vậy \(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}=\frac{25}{102}\)

 

 

b) \(B=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}\)

\(B=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)

\(B=3.\left[\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\right]\)

\(B=3.\left(\frac{1}{1}-\frac{1}{2016}\right)\)

\(B=3.\frac{2015}{2016}\)

\(B=\frac{2015}{672}\)

Vậy \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}=\frac{2015}{672}\)

 

 

 

 

 

 

2 tháng 8 2015

bạn lên mạng tra từng câu 1 sẽ có

3 tháng 8 2015

ukm cảm ơn bạn nhìu

 

12 tháng 8 2015

 Tính tổng :

a ,1+2+3+..........+2015 

SSH của tổng trên là :

   (2015-1):1+1=2015(SH)

Tổng trên là:

  (2015:2)x(2015+1)=2031120

b, 3+5+7+......+2015

SSH của tổng trên là :

     (2015-3):2+1=1007(SH)

Tổng trên là:

     (1007:2)x(2015+3)=1016063

LƯU ý: SSH=số số hạng nha

12 tháng 8 2015

a 2029106

b508032

c1679780.53381924

tick đúng cho mk nha

1 tháng 1 2016

vậy thì tổng của : -1+(-2)+(-3)+.........+(-49) = -(1+2+3+..........+49) = -1225

12 tháng 10 2016

thôi chịu nhiều quá ai mà làm đc tự đi mà làm hỏi thì hỏi thì hỏi ít thôi người ta còn trả lời đc .

12 tháng 10 2016

làm đi mà

làm xong mình cho 1000

10 tháng 5 2016

1a) x - 1/3 = 13/6

          x  = 13/6 + 1/3

          x  = 5/2

b) -7/5 - x = 13/7 : 13/7

    -7/5 - x = 1

             x = -7/5 - 1

             x = -12/5

2) A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016

A = 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016

A = 1 - 1/2016

10 tháng 5 2016

A = 1 - 1/2016

A = 2015/2016

10 tháng 1 2017

bó tay kkk

22 tháng 8 2017

B = 6 + 6^3 + 6^5 + ... + 6^2015

=> 6^2.B = 6^2(6 + 6^3 + 6^5 + ... + 6^2015

=> 36B = 6^2.6 + 6^3.6 + 6^5.6 + ... + 6^2015 .6 

=> 36B = 6^3 + 6^4 + 6^6 + ... + 6^2016

Lấy 36B trừ đi B, ta có:

     35B = 6^2016 - 6 

=> B = (6^2016 - 6)/35

1 tháng 1 2016

​A rê. Lớp 6 ngược mà hỏi bài đó hở

1 tháng 1 2016

đây là bài của bảo trân

1 tháng 10 2020

Trả lời :

A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 30 . 31

=> 3A = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 30 . 31 . 3

=> 3A = 1 . 2 . 3 + 2 . 3 . (4 - 1) + 3 . 4 . (5 - 2) + ... + 30 . 31 . (32 - 29)

=> 3A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 30 . 31 . 32 - 29 . 30 . 31

=> 3A = 30 . 31 . 32

=> 3A = 29760

=> A = 9920

1 tháng 10 2020

a) \(A=1.2+2.3+3.4+.........+30.31\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+........+30.31.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+30.31.\left(32-29\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+30.31.32-29.30.31\)

\(=30.31.32\)

\(\Rightarrow A=\frac{30.31.32}{3}=9920\)

b) \(B=1+\left(1+2\right)+\left(1+2+3\right)+........+\left(1+2+...........+20\right)\)

\(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+.......+\frac{20.21}{2}\)

\(=\frac{1.2+2.3+3.4+.......+20.21}{2}\)

Làm tương tự như phần a ta được: 

\(1.2+2.3+3.4+.......+20.21=\frac{20.21.22}{3}=3080\)

\(\Rightarrow B=\frac{3080}{2}=1540\)

27 tháng 3 2017

\(S=\dfrac{3}{1.2}+\dfrac{3}{2.3}+...+\dfrac{3}{2015.2016}\)

\(=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2015.2016}\right)\)

\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(=3\left(1-\dfrac{1}{2016}\right)\)

\(=3.\dfrac{2015}{2016}=\dfrac{6045}{2016}\)

Vậy \(S=\dfrac{6045}{2016}\)

27 tháng 3 2017

\(S=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}\right)\)

\(\Rightarrow S=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(\Rightarrow S=3\left(1-\dfrac{1}{2016}\right)=3.\dfrac{2015}{2016}=\dfrac{6045}{2016}\)

Vậy ...