Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Giải:
Gọi 2 thừa số lần lượt là a, b
Ta có: a.b = 1692
và \(\left(a+4\right).b=1880\)
\(\Rightarrow\left(a+4\right).b-a.b=1880-1692\)
\(\Rightarrow a.b+4.b-a.b=188\)
\(\Rightarrow4b=188\)
\(\Rightarrow b=47\)
\(\Rightarrow a=36\)
Vậy 2 thừa số cần tìm là 47 và 36
Bài 3:
Ta có: \(A=2^2+2^3+2^4+...+2^{1975}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{1976}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+...+2^{1976}\right)-\left(2^2+2^3+2^4+...+2^{1975}\right)\)
\(\Rightarrow A=2^{1976}-2^2\)
\(\Rightarrow A=2^{1976}-4\)
Bài 3:
ta có: 5 lần góc B bù với góc A
=> 5. góc B + góc A = 180 độ
=> góc A = 180 độ - 5. góc B
ta có: 2 lần góc B phụ với góc A
=> 2. góc B + góc A = 90 độ
thay số: 2.góc B + ( 180 độ - 5.góc B) = 90 độ
2.góc B + 180 độ - 5. góc B = 90 độ
=> (-3).góc B = 90 độ - 180 độ
(-3).góc B = -90 độ
góc B = (-90 độ) : (-3)
=> góc B = 30 độ
mà góc A = 180 độ - 5.góc B
thay số: góc A = 180 độ - 5 . 30 độ
góc A =180 độ - 150 độ
góc A = 30 độ
=> góc A = góc B ( = 30 độ)
Bài 1:
ta có: \(3^{4n}+2017=\left(3^4\right)^n+2017=81^n+2017\)
mà 81^n có chữ số tận cùng là 1
2017 có chữ số tận cùng là 7
=> 81^n + 2017 có chữ số tận cùng là: 1+7 = 8
Bài 2:
ta có: \(M=9^{2n+1}+1\)
\(M=9^{2n}.9+1\)
\(M=81^n.9+1\)
mà 81^n có chữ số tận cùng là 1=> 81^n.9 có chữ số tận cùng là 9
=> 81^n.9 +1 có chữ số tận cùng là 0
=> 81^n.9+1 chia hết cho 10
\(\Rightarrow9^{2n+1}+1⋮10\left(đpcm\right)\)
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho
2A=2+2^2+2^3+...+2^2015
2A-A=2^2015-1
A=2^2015-1
2^3 đồng dư 1 mod 7
2^2015 đồng dư 1 mod 7
2^2015 chia hết cho 7