K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

Hình Tự Vẽ Nhe

a)

Áp dụng định lí PItago vào tam giác ABC ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=13^2-5^2=12\left(cm\right)\)

b)

Tứ Giác ABCE có:

D là trung điểm của AC (gt)

D là trung điểm của BE ( E đối xứng B qua A )

=> Tứ Giác ABCE là Hình Bình Hành

c)

Ta có:

Vì tứ giác ABCE là hình bình hành => CE=AB; CE//AB ( tính chất hình bình hành ) (1)

Mà M đối xứng với B qua A => AM=AB (2)

CE//AB (cmt) => CE//AM (3)

Từ (1) và (2) (3) => CE//AM và CE=AM

Tứ Giác AMEC có:

CE=AM (cmt)

CE//AM (cmt)

Góc A = 90 độ (gt)

=> Tứ giác AMEC là Hình Chữ Nhật

20 tháng 4 2020

a) xét tứ giác ABDC có:

M là trung điểm của BC

M là trung điểm của AD (D đối xứng A qua M)

=> tứ giác ABDC là bình hành

xét hình bình hành ABDC có: \(\widehat{BAC}\)=90o

=> ABDC là hình chữ nhật

b) không hiểu lắm

16 tháng 11 2018

B D V N M K E C

a) Xét tứ giác ADME có :

Góc A = 90( tam giác ABC vuông tại A )

Góc D = 900 ( MD vuông góc AB )

Góc E = 900 ( ME vuông góc AC )

Do đó tứ giác ADME là hình chữ nhật

b) Chứng minh đúng D, E là trung điểm của AB ; AC

Chứng minh đúng DE là đường trung bình của tam giác 

ABC nên DE song song và \(DE=\frac{BC}{2}\)

Cho nên DE song song với BM và DE = BM

=> Tứ giác BDME là hình bình hành

c) Xét tứ giác AMCF có :

E là trung điểm MF ( vì M đối xứng với F qua E )

Mà E là trung điểm của AC ( cmt )

Nên tứ giác AMCF là hình bình hành 

Ta có AC vuông góc MF ( vì ME vuông góc AC )

Do đó tứ giác AMCF là hình thoi

d) Chứng minh đúng tứ giác ABNE là hình chữ nhật

Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE

trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE

nên \(KO=\frac{BE}{2}\)

mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)

trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN

nên tam giác AKN vuông tại A 

Vậy AK vuông góc KN

5 tháng 12 2018

$\in $