Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
Bài 1
1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009
=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)
=1+0+0+....+0
=1
Bài 2
Ta có: S=3^1+3^2+...+3^2015
3S=3^2+3^3+...+3^2016
=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)
2S=3^2016-3^1
S=\(\frac{3^{2016}-3}{2}\)
Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)
=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)
=> S có 2 tận cùng 4 hoặc 9
mà S có số hạng lẻ => S có tận cùng là 9
Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
3
a+5b=a-b+6b
vì:
a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)
b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6
=> a-13b chia hết cho 6 (đpcm)
Ta có: 3n+2 - 2n+4 + 3n + 2n
= 3n . 32 - 2n . 24 + 3n + 2n
= 3n . 9 - 2n . 16 + 3n + 2n
= (3n . 9 + 3n) - (2n . 16 - 2n)
= 3n . (9 + 1) - 2n . (16 - 1)
= 3n . 10 - 2n . 15
Do n nguyên dương nên 3n chia hết cho 3, 2n chia hết cho 2
=> 3n . 10 chia hết cho 30, 2n . 15 chia hết cho 30
=> 3n . 10 - 2n . 15 chia hết cho 30
=> đpcm
Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11