K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P\left(x\right)=x^4+x^3-x^2+2x-5\)

\(Q\left(x\right)=x^4+5x^3-3x^2-2x-5\)

b: \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=-4x^3+2x^2+4x\)

c: Bậc của H(x) là 3

 

20 tháng 5 2022

Còn câu D bạn ơi

a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

Bậc là 5

\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

Bậc là 5

b: H(x)=P(x)+Q(x)

\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)

=10x+6,25

c: Để H(x)=0 thì 10x+6,25=0

hay x=-0,625

21 tháng 5 2016

\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)

\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)

\(P\left(x\right)=9x^2+3x-10-2x^3\)

\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)

\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)

Sắp giảm :

\(P\left(x\right)=-2x^3+9x^2+3x-10\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(A\left(x\right)\)\(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)

\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)

\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)

\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)

20 tháng 5 2022

a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b) Sửa  Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)

 hệ số cao nhất :9

 hệ số tự do  :- 14

c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)

\(M\left(x\right)=x^5+6x^4-x-14\)

20 tháng 5 2022

d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)

\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)

\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b: Hệ số cao nhất của P(x) là 1

Hệ số tự do của P(x) là 0

20 tháng 5 2022

`a)`

`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`

   `P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`

  `P(x)=x^5+2x^4-9x^3-x`

`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`

   `Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`

   `Q(x)=5x^4+9x^3+4x^2-14`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)` Đa thức `P(x)` có:

  `@` Hệ số cao nhất: `1`

  `@` Hệ số tự do: `0`

14 tháng 5 2021

a. P(x) = -3x5 - 7x3 + x2 - 5x + 2

Q(x) = -4x5 - x4 + x3 - x2 - 6x 

b. Đa thức P(x) và Q(x) có bậc là 5

d. Q(-1) = -4(-1)5 - (-1)4 + (-1)3 - (-1)2 - 6(-1)

=  -4.(-1) + 1 + 1 - 1 + 1 - 6.(-1)

= 12

a) Ta có: \(P\left(x\right)=x^2-5x-3x^5-7x^3+2\)

\(=-3x^5-7x^3+x^2-5x+2\)

Ta có: \(Q\left(x\right)=x^3-6x-x^2-4x^5-x^4\)

\(=-4x^5-x^4+x^3-x^2-6x\)

 

16 tháng 6 2020

a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8

g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6

f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6

                 = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )

                 = 4x2 - x + 2

g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )

                = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8

               = ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )

                = 2x5 + 14x4 + 4x3 + 2x2 -9x - 14

16 tháng 6 2020

Đặt H(x) = g(x) + f(x)

=> H(x) = 4x2 - x + 2

H(x) = 0 <=> 4x2 - x + 2 = 0

              <=> x(4x - 1) = -2

x-1-212
4x-121-2-1
x1/41/2-1/40
 loạiloạiloạiloại

=> Không có giá trị x thỏa mãn 

Vậy H(x) vô nghiệm

Mình chỉ biết làm thế này thôi