Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm đa thức M biết :
a, M +5 (5x2 - 2xy) = 6x2 +9xy - y2
M + 5. 5x2 - 5. 2xy = 6x2 + 9xy - y2
M + 25x2 - 10xy = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 + 10xy - 25x2
M = ( 6x2 - 25x2 ) + ( 9xy + 10xy ) - y2
M = -19x2 + 19xy - y2
b, M - ( 3xy - 4y2 ) = x2 - 7xy + 8xy
M - 3xy + 4y2 = x2 - 15xy
M = x2 - 15xy - 4y2 + 3xy
M = x2 + ( 15xy + 3xy ) - 4y2
M = x2 + 18xy - 4y2
c, (25 . x2y - 13xy2+ y3 ) - M = 11x2y - 2y3
25x2y - 13xy2+ y3 - M = 11x2y - 2y3
M = 25x2y - 13xy2+ y3 - 11x2y - 2y3
M = ( 25x2y - 11x2y ) + ( y3 - 2y3 ) - 13xy2
M = 14x2y - y3 - 13xy2
d, M + (5x2 - 2xy )= 6x2 + 9xy -y2
M + 5x2 - 2xy = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 + 2xy - 5x2
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1
C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1
C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1
=>Bặc: 3
D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2
D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2
D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2
=> Bậc :4
E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1
E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1
E= 2x2y + \(\dfrac{13}{2}\)xy + 1
=> Bậc: 3
K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1
K= (5x3 - 6x3 ) + (- 4x + 4x) +1
K= -1x3 + 1
=>Bậc: 3
F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5
F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5
F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5
=> Bậc :6
CHÚC BN HỌC TỐT ^-^
a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)
= 3x2-2xy+y2+x2-xy+2y2-4x2+y2
= 4y2-3xy
b, = x2-y2+2xy-x2-xy-2y2+4xy-1
= -3y2+5xy
c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2
\(a,M-\left(3xy-4y^2\right)=x^2-7xy+8y^2\)
\(\Leftrightarrow M=x^2-7xy+8y^2+\left(3xy-4y^2\right)\)
\(\Leftrightarrow x^2-7xy+8y^2+3xy-4y^2\)
\(\Leftrightarrow x^2+\left(-7xy+3xy\right)+\left(8y^2-4y^2\right)\)
\(\Leftrightarrow x^2+\left(-4xy\right)+4y^2\)
\(\Rightarrow M=x^2+\left(-4xy\right)+4y^2\)
Bài 1
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^{2^2}-12x^2y^3\)
\(=(15x^2y^3-12x^2y^3)+(7x^2-12x^2)+(-8x^3y^2+11x^3y^2)\)
\(=3x^2y^3-5x^2+3x^3y^2\)
Bậc của hệ số cao nhất là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(=(3x^5y-\frac{1}{2}x^5y)+(\frac{1}{3}xy^4+2xy^4)+(\frac{3}{4}x^2y^3-x^2y^3)\)
\(=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Bậc của hệ số cao nhất là 6
Bài 2
\(a.A=5xy-y^2-2xy+4xy+3x-2y\)
\(=(5xy-2xy+4xy)-y^2+3x-2y\)
\(=7xy-y^2+3x-2y\)
\(b.B=\frac{1}{2}ab^2-\frac{1}{8}ab^2+\frac{3}{4}a^2b-\frac{3}{8}a^2b-\frac{1}{2}ab^2\)
\(=(\frac{1}{2}ab^2-\frac{1}{8}ab^2-\frac{1}{2}ab^2)+(\frac{3}{4}a^2b-\frac{3}{8}a^2b)\)
\(=-\frac{1}{8}ab^2+\frac{3}{8}a^2b\)
\(c.C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(=(2a^2b+5a^2b)+(-8b^2-3b^2)+(5c^2+4c^2)\)
\(=7a^2b-11b^2+9c^2\)
Bài 3
a. Thay x = 2 và y = 9 vào biểu thức A có
\(A=2.2^2-\frac{1}{3}.9\)
\(=8-3=3\)
Vậy giá trị biểu thức A = 3 khi x = 2 và y = 9
b.Thay a = -2 và b = -1/3 vào biểu thức B có
\(B=\frac{1}{2}.(-2)^2-3.(-\frac{1}{3})^2\)
\(=\frac{1}{2}.4-3.\frac{1}{9}\)
\(=2-3=-1\)
Vậy giá trị biểu thức B = -1 khi x = -2 và y = -1/3
c.Thay x = -1/2 và y = 2/3 vào biểu thức P có
\(P=2.(\frac{-1}{2})^2+3.\frac{-1}{2}.\frac{2}{3}+(\frac{2}{3})^2\)
\(=2.\frac{1}{4}-1+\frac{4}{9}\)
\(=\frac{1}{2}-\frac{5}{9}=\frac{-1}{18}\)
Vậy giá trị biểu thức P = -1/18 khi x = -1/2 và y = 2/3
d. Thay a = -1/3 và b = -1/6 vào biểu thức có
\(12.\frac{-1}{3}.(\frac{-1}{6})^2\)
\(=-4.\frac{1}{36}=\frac{-1}{9}\)
Vậy giá trị biểu thức bằng -1/9 khi a = -1/3 và b = -1/6
e.Thay x = 2 và y = 1/4 vào biểu thức có
\((\frac{-1}{2}.2.\frac{1^2}{4^2}).(\frac{2}{3}.2^3)\)
\(=-\frac{1}{16}.\frac{16}{3}=\frac{-1}{3}\)
Vậy giá trị biểu thức bằng -1/3 khi x = 2 và y = 1/4
Bài 4
\(a.(\frac{-1}{2}a^2)(-24a).(4m-n)\)
\(=\frac{-1}{2}.(-24).a^2.a.(4m-n)\)
\(=12a^3.(4m-n)\)
\(=48a^3m-12a^3n\)
\(b.(x^2)(x^3.2).(-1).(-3a)\)
\(=2.(-1).(-3).x^2.x^3.a\)
\(=6x^5a\)
Bài 5
\(a.\frac{1}{2}x^2(2x^2y^2z).(\frac{-1}{3}x^2y^3)\)
\(=\frac{1}{2}.2.(\frac{-1}{3}).x^2.x^2.x^2.y^2.y^3.z\)
\(=\frac{-1}{3}x^6y^5z\)
Bậc của đơn thức trên là 12
\(b.(-x^2y)^3.(\frac{1}{2}x^2y^3).(-2xy^2z)^2\)
\(=\frac{1}{2}.4.x^5.x^2.x^2.y^3.y^3.y^4.z^2\)
\(=2x^9y^{10}z^2\)
Bậc của đơn thức trên là 21
Bài 6
\(a.(-6x^3zy).(\frac{2}{3}yz)^2\)
\(=-6.\frac{4}{9}.x^3.y.y^2.z.z^2\)
\(=-\frac{8}{3}x^3y^3z^3\)
\(b.(xy-5x^2y^2+xy^2-xy^2)-(xy^2+3xy^2-9x^2y)\)
\(=-5x^2y^2+9x^2y-4xy^2+xy\)
Học tốt
Bài 26:
\(A+B+C=4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2\)
\(=\left(4x^2+3x^2-x^2\right)+\left(-5xy+2xy+3xy\right)+\left(3y^2+y^2+2y^2\right)\)
\(=6x^2+6y^2\)
\(B-C-A=\left(3x^2+2xy+y^2\right)-\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)\)
\(=3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2\)
\(=\left(3x^2-4x^2+x^2\right)+\left(2xy-3xy+5xy\right)+\left(y^2-2y^2-3y^2\right)\)
\(=-4xy-2y^2\)
\(C-A-B=\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2\)
\(=\left(-x^2-4x^2-3x^2\right)+\left(3xy+5xy-2xy\right)+\left(2y^2-3y^2-y^2\right)\)
\(=-8x^2+6xy-2y^2\)
cái câu B-C-A ý thì kết quả phải là 4xy-4y^2 chứ
vì: 2xy-3xy+5xy =4 xy
y^2 - 2y^2-3y^2 = -4y^2
=> = 4xy-4y^2