K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. Bài 7: Phân tích đa thức thành nhân tử e. (x2 + y5 - 5)2 - 4 (xy + 2)2 f. (4x2 - 3x - 18)2 - (4x2 +3x)2 Bài 10: Phân tích đa thức thành nhân tử a. x2 - 4x2y2 + y2 +2xy b. x6 - y6 c. 25 - x2 + 2xy - y2 d. 4b2c2 - (b2 + c2 - a2) e. (x + y + z)2 + (x + y -z)2 - 4z2 f. 9 (x +y - 1)2 - 4 (2x + 3y + 1)2 Bài 11: Phân tích đa thức thành nhân tử a. (x2 - 25)2...
Đọc tiếp

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.

Bài 7: Phân tích đa thức thành nhân tử

e. (x2 + y5 - 5)2 - 4 (xy + 2)2

f. (4x2 - 3x - 18)2 - (4x2 +3x)2

Bài 10: Phân tích đa thức thành nhân tử

a. x2 - 4x2y2 + y2 +2xy

b. x6 - y6

c. 25 - x2 + 2xy - y2

d. 4b2c2 - (b2 + c2 - a2)

e. (x + y + z)2 + (x + y -z)2 - 4z2

f. 9 (x +y - 1)2 - 4 (2x + 3y + 1)2

Bài 11: Phân tích đa thức thành nhân tử

a. (x2 - 25)2 - (x - 5)2

b. (4x2 - 25)2 - 9(2x - 5)2

c. 4 (2x - 3)2 - 9 (4x2 - 9)2

d. x6 - x4 + 2x3 + 2x2

e. (3x3 + 3x + 2)2 - (3x2 + 3x - 2)2

f. x3 + y3 + z3 - 3xyz

Bài 12: Phân tích đa thức thành nhân tử

a. (xy +1)2 - (x + y)2

b. (x + y)3 - (x - y)3

c. 3x4y2 + 3x3y2 + 3xy2 + 3y2

d. 4 (x2 - y2) - 8 (x - ay) - 4 (a2 -1)

e. (x +y)3 -1 -3xy (x +y -1)

Bài 13: Tính nhanh:

b. 482 - 422 + 64 - 522

d. 722 + 144.16 + 162 - 122

e. \(\dfrac{43^2-11^2}{\left(36-5\right)^2-\left(27-5\right)^2}\)

f. 732 - 132 - 102 + 20.13

1

Bài 12: 

a: \(=\left(xy+1+x+y\right)\left(xy+1-x-y\right)\)

\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left[x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(x+1\right)\left(x-1\right)\left(y+1\right)\left(y-1\right)\)

b: \(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

c: \(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+\left(x+1\right)\right]\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 

18 tháng 8 2018

Bài 8:

b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3

= (1+2x2y)(1-2x2y+4x4y2)

e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)

= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))

18 tháng 8 2018

Bài 9:

c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3

= (1-3x)3

d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)

= (x+\(\dfrac{1}{2}\))3

f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)

= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

15 tháng 7 2018

\(a,36x^2-\left(3x-2\right)^2=\left(6x-3x+2\right)\left(6x+3x-2\right)\)

\(=\left(3x+2\right)\left(9x-2\right)\)

phần b,c,d lm tg tự

\(e,16x^2-24xy+9y^2=\left(4x-3y\right)^2\)

7 tháng 8 2018

c)\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

d)\(\dfrac{a^2}{4}-2a+4=\left(\dfrac{a}{2}-2\right)^2\)

e) \(4y^2-9x^2=\left(2y-3x\right)\left(2y+3x\right)\)

f)\(9y^2-\dfrac{1}{4}=\left(3y-\dfrac{1}{2}\right)\left(3y+\dfrac{1}{2}\right)\)

g)\(8x^3+8a^3=\left(2x+2a\right)\left(4x^2-4xa+4a^2\right)\)