\(x\) biết:

\(x\)\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

1. So sánh: a. \(\dfrac{-18}{38}\) và \(\dfrac{-32}{68}\) b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) với 1. 2. Tìm X, biết: a. \(-\dfrac{11}{12}\)x + \(\dfrac{3}{4}\)= \(-\dfrac{1}{6}\) b. x - 43= (57-x) - 50 c. 2x-(21.3.105-105.61)= -11.26 d. \(\left|x+1\right|\)=3 e. \(\left|2x+3\right|\)=5 3. Tính: a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009} \) b. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) c....
Đọc tiếp

1. So sánh: a. \(\dfrac{-18}{38}\)\(\dfrac{-32}{68}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) với 1.

2. Tìm X, biết:

a. \(-\dfrac{11}{12}\)x + \(\dfrac{3}{4}\)= \(-\dfrac{1}{6}\)

b. x - 43= (57-x) - 50

c. 2x-(21.3.105-105.61)= -11.26

d. \(\left|x+1\right|\)=3

e. \(\left|2x+3\right|\)=5

3. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009} \)

b. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

c. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

4. Chu vi của một sân hình chữ nhật là 48m. Biết chiều dài của sân bằng 140% chiều rộng. Tính diện tích của sân hình chữ nhật đó. (giải có lời giải và phép tính đầy đủ).

5. Trên cùng một nửa mặt phẳng có bờ chứa tia Ot, vẽ các tia Om và On sao cho góc tOm = 45 độ, góc tOn = 135 độ.

a. Trong 3 tia Ot, Om, On tia nào nằm giữa hai tia còn lại? Vì sao?

b. Tính số đo góc mOn. (ko cần vẽ hình)

1

Câu 2: 

a: =>-11/12x=-1/6-3/4=-2/12-9/12=-11/12

=>x=1

b: =>x-42=57-x-50=7-x

=>2x=49

hay x=49/2

d: =>x+1=3 hoặc x+1=-3

=>x=2 hoặc x=-4

e: =>2x+3=5 hoặc 2x+3=-5

=>2x=2 hoặc 2x=-8

=>x=1 hoặc x=-4

17 tháng 4 2017

\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Rightarrow x+1=2017\)

\(\Rightarrow x=2017-1=2016\)

Vậy x = 2016

17 tháng 4 2017

\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2016}{2017}\)

1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)

\(\dfrac{3}{4}\)+\(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)

\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{2013}{8068}\)

Bn tự lm tiếp nhé!!! Sorry mk đang vội

17 tháng 5 2017

\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)x=1\)

\(\Rightarrow\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)x=1\)

\(\Rightarrow\left(\dfrac{1}{2}-\dfrac{1}{50}\right)x=1\)

\(\Rightarrow\dfrac{12}{25}x=1\)

\(\Rightarrow x=\dfrac{25}{12}\)

Vậy \(x=\dfrac{25}{12}\)

17 tháng 5 2017

\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right).x=1\)

Ta có: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)

\(=\dfrac{3}{2.3}-\dfrac{2}{2.3}+\dfrac{4}{3.4}-\dfrac{3}{3.4}+...+\dfrac{50}{49.50}-\dfrac{49}{49.50}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{12}{25}\)

\(\Rightarrow\dfrac{12}{25}.x=1\Rightarrow x=1:\dfrac{12}{25}=\dfrac{25}{12}=2\dfrac{1}{12}\)

Vậy \(x=\dfrac{25}{12}\) hay \(x=2\dfrac{1}{12}\)

14 tháng 8 2017

a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)

\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)

\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)

\(x=\dfrac{-9198}{4400}\)

14 tháng 8 2017

a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)

\(x+\dfrac{206}{100}=5\)

\(x=5-\dfrac{206}{100}\)

\(x=\dfrac{147}{50}\)

Vậy \(x=\dfrac{147}{50}\)

9 tháng 3 2018

Ta có: \(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\)

\(=\dfrac{a+1-a}{a\left(a+1\right)}\)

\(=\dfrac{1}{a\left(a+1\right)}\) (đpcm)

Ta được:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+...-\dfrac{1}{100}\) \(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

27 tháng 4 2018

a)

\(\dfrac{1}{2\cdot3}x+\dfrac{1}{3\cdot4}x+...+\dfrac{1}{49\cdot50}x=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=1\\ x\cdot\dfrac{12}{25}=1\\ x=1:\dfrac{12}{25}=1\cdot\dfrac{25}{12}=\dfrac{25}{12}\)

17 tháng 4 2017

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{299}{600}\)

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{299}{600}\)

\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{299}{600}\)

\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{299}{600}\)

\(\dfrac{1}{x+1}=\dfrac{300}{600}-\dfrac{299}{600}\)

\(\dfrac{1}{x+1}=\dfrac{1}{600}\)

=> x + 1 = 600

x = 600 - 1

x = 599

Vậy x = 599

15 tháng 4 2018

Sửa lại đề:

\(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{49.50}\)

\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-..........-\dfrac{1}{49}-\dfrac{1}{50}\)

\(M=1-\dfrac{1}{50}\)

\(M=\dfrac{50}{50}-\dfrac{1}{50}\)

\(M=\dfrac{49}{50}\)

15 tháng 4 2018

Đề bài là thu gọn / tính giá trị biểu thức nhé chứ không phải là So sánh , thiếu dữ kiện kìa

2 tháng 5 2017

Bài 1:

a)

\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)

b)

\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)

c)

\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)

d)

\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)

e)

\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)

f)

\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)

g)

\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)

h)

\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)

i)

\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)