Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
1.
a)\(\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)
b)\(9a^2+3ab+\frac{1}{4}a^2\)
2.
a)\(\left(5x+2b\right)^2\)
b)\(\left(x+1\right)^2\)
c)\(\left(3x+1\right)^2\)
d)\(\left[\left(2x+3y\right)+1\right]^2\)
Bài 1:
a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)
b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???
d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)
Bài 2:
a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)
b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)
c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)
a) \(x^2-2x=24\)
\(\Rightarrow x^2-2x-24=0\)
\(\Rightarrow x^2-6x+4x-24=0\)
\(\Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Rightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) \(\left(5-2x\right)^2-16=0\)
\(\Rightarrow\left(5-2x\right)^2-4^2=0\)
\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)
\(\Rightarrow\left(1-2x\right)\left(9-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\9-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
c)Sửa đề
\(x^2-4x+4-9x^2+6x-1=0\)
\(\Rightarrow\left(x^2-4x+4\right)-\left(9x^2-6x+1\right)=0\)
\(\Rightarrow\left(x-2\right)^2-\left(3x-1\right)^2=0\)
\(\Rightarrow\left(x-2-3x+1\right)\left(x-2+3x-1\right)=0\)
\(\Rightarrow\left(-2x-1\right)\left(4x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-2x-1=0\\4x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2x=1\\4x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)
d) \(2x^2+y^2+2xy-4x+4=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)=0\)
\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2\ge0\) với mọi x và y
Mà \(\left(x+y\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)