Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng j: Đoạn thẳng [A, H] Đoạn thẳng k: Đoạn thẳng [H, M] Đoạn thẳng l: Đoạn thẳng [N, H] Đoạn thẳng m: Đoạn thẳng [M, N] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [A, M] Đoạn thẳng q: Đoạn thẳng [E, F] Đoạn thẳng r: Đoạn thẳng [A, I] Đoạn thẳng t: Đoạn thẳng [I, D] A = (9.91, 10.29) A = (9.91, 10.29) A = (9.91, 10.29) B = (3.97, -8.27) B = (3.97, -8.27) B = (3.97, -8.27) C = (33.4, -8.47) C = (33.4, -8.47) C = (33.4, -8.47) Điểm H: Giao điểm đường của i, g Điểm H: Giao điểm đường của i, g Điểm H: Giao điểm đường của i, g Điểm M: H đối xứng qua f Điểm M: H đối xứng qua f Điểm M: H đối xứng qua f Điểm N: H đối xứng qua h Điểm N: H đối xứng qua h Điểm N: H đối xứng qua h Điểm E: Giao điểm đường của f, k Điểm E: Giao điểm đường của f, k Điểm E: Giao điểm đường của f, k Điểm F: Giao điểm đường của h, l Điểm F: Giao điểm đường của h, l Điểm F: Giao điểm đường của h, l Điểm I: Trung điểm của m Điểm I: Trung điểm của m Điểm I: Trung điểm của m Điểm D: Giao điểm đường của s, q Điểm D: Giao điểm đường của s, q
a) Do EM = EH và AE vuông góc MH tại E nên AB là đường trung trực của MH. Tương tự AC là trung trực HN.
b) Do AB là đường trung trực của MH nên AM = AH. Tương tự AH = AN
Vậy AM = AN hay tam giác AMN cân tại A.
c) Xét tam giác HMN có E, F lần lượt là trung điểm HM, HN nên EF là đường trung bình tam giác.
Vậy EF // MN.
d) Tam giác cân AMN có I là trung điểm MN nên \(AI⊥MN\)
Lại có MN //EF nên \(AI⊥EF.\)
a) Ta thấy AB vuông góc với MH tại trung điểm E của MH nên AB là đường trung trực của MH.
Ta thấy AC vuông góc với NH tại trung điểm F của NH nên AC là đường trung trực của NH.
b) Do AB là trung trực của MH nên AM = AH.
Tương tự AN = AH. Vậy nên AM = AN hay tam giác AMN cân tại A.
c) Xét tam giác HMN có E là trung điểm MH, F là trung điểm HN nên EF là đường trung bình tam giác HMN.
Suy ra EF // MN.
d) Do tam giác AMN cân tại A nên trung tuyến AI đồng thời là đường cao. Vậy AI vuông góc MN.
Lại có MN // EF nên AI vuông góc EF.
a) Ta có: \(GI=IF=\dfrac{GF}{2}\) ( do I là trung điểm GF)
\(\Rightarrow GI=GF=\dfrac{4}{2}=2\left(cm\right)\)
Xét ΔABC có:
I là trung điểm của GF(gt)
IK//FH(gt)
=> K là trung điểm của GH
=> IK là đường trung bình của tam giác ABC
=> \(IK=\dfrac{1}{2}FH=\dfrac{1}{2}.3=\dfrac{3}{2}\)(cm)
Xét tam giác GIK vuông tại I có:
\(GK^2=GI^2+IK^2\)( định lý Pytago)
\(\Rightarrow GK=\sqrt{GI^2+IK^2}=\sqrt{2^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{5}{2}\left(cm\right)\)
b) Xét tam giác KGF có:
\(KI\perp GF\)( KI //FH, FH⊥GF=> KI⊥GF)
KI là đường trung tuyến( I là trung điểm của GF)
=> Tam giác KGF cân tại K
c) Cách 1:
Xét tam giác GCH vuông tại C có
FK là đường trung tuyến ứng với cạnh huyền GH( K là trung điểm của GH)
=> \(FK=\dfrac{1}{2}GH=KH\) \(\Rightarrow\Delta FKH\) cân tại K
Cách 2:
Xét tam giác GFH có:
IK là đường trung bình
=> IK//FH \(\Rightarrow\left\{{}\begin{matrix}\widehat{IKF}=\widehat{KFH}\\\widehat{GKI}=\widehat{KHF}\end{matrix}\right.\)
Mà \(\widehat{GKI}=\widehat{IKF}\) ( do tam giác GKF cân tại K nên KI là tia phân giác \(\widehat{GKF}\))
\(\Rightarrow\widehat{KFH}=\widehat{KHF}\Rightarrow\Delta KFH\) cân tại K
d) Cách 1:
Xét tam giác KFH cân tại K có:
KM là đường cao ( KM⊥FH)
=>KM là đường trung tuyến => M là trung điểm của FH
Cách 2:
Xét tứ giác IKMF có:
\(\widehat{KIF}=\widehat{IFM}=\widehat{FMK}=90^0\) => Tứ giác IKMF là hình chữ nhật
=> IK =FM mà \(FM=\dfrac{1}{2}FH\Rightarrow IK=\dfrac{1}{2}FH\Rightarrow M\) là trung điểm của FH
Cách 3:
Xét tam giác GFH có:
K là trung điểm của GH(IK là đường trung bình)
KM//GF( cùng vuông góc với FH)
=> M là trung điểm của FH
e) Xét tam giác GCH vuông tại C có:
\(GH^2=GC^2+CH^2\Rightarrow GH=\sqrt{GC^2+CH^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)
Ta có: Tứ giác IKMF là hình chữ nhật
\(\Rightarrow IM=FK=\dfrac{1}{2}GH=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)