K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

Bài 1: S = |x + y| + 2.|y - 2| + 1988 nhỏ nhất khi |x + y| = 0 và 2.|y - 2| = 0

=> x = -2 và y = 2

Bài 2: Ta có: A + B = ( a + b - 5) + ( -b - c + 1) = a + b - 5 - b - c + 1 = a - c - 4

và C - D = (b - c - 4) - ( b - a) = b - c - 4 - b + a = a - c - 4

vậy A + B = C - D

Bạn viết sai đề phải không?

26 tháng 1 2017

Bài 2 : 

Ta có : A + B = a + b -  5 + ( - b - c + 1 )

                    = a + b - 5 - b - c + 1 

                    = a - 4 - c

C + D = b - c - 4 + b - a

          = 2b - c - a - 4

=> A + B \(\ne\)C + D

bài 2 bn ghi sai đề nha

ko cm được

25 tháng 1 2017

a, ax+ay+bx+by 

= a.( x+y)+b.(x+y)

=( a+b).(x+y)

=-2.17=-34

b, a.(x-y)+b.(x-y)

=(a+b).(x-y)

= -7.(-1)

= 7

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

12 tháng 7 2017

a. P=2010-(x+1)^2008

(x+1)^2008>_0

<=> -(x+1)^2008<_0

<=>2010-(x+1)^2008<_2010

Vậy GTLN là 2010

b.1010-|3-x|

|3-x| >_0

<=> -|3-x| <_0 <=> 1010-|3-x| <_1010

Vậy GTLN là 1010 

12 tháng 7 2017

Còn phần c,d thì sao ạ

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko