Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Leftrightarrow\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)-17=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow x=\frac{10}{9}\)
a.\(\Leftrightarrow\left(x-1\right)^3+8-x^3+3x\left(x+2\right)=17\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\Leftrightarrow x=\frac{10}{9}\)
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 12
<=> x3 - 2x2 + x - x2 + 2x - 1 + 8 + 4x + 2x2 - 4x - 2x2 + 3x2 + 6x = 17
<=> 9x + 7 = 17
<=> 9x = 17 - 7
<=> 9x = 10
<=> x = \(\frac{10}{9}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 - 2) = 15
<=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 2x = 15
<=> 2x + 8 = 15
<=> 2x = 15 - 8
<=> 2x = 7
<=> x = \(\frac{7}{2}\)
c) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x2 + 1)2 = 15
<=> x3 + 45x - 18 - x3 - 3x2 - 9x + 3x2 + 9x + 27 = 15
<=> 45x + 9 = 15
<=> 45x = 15 - 9
<=> 45x = 6
<=> x = \(\frac{6}{45}\)
d) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 3
<=> x3 - 25x - x3 + 2x2 - 4x - 8 = 3
<=> -25x - 8 = 3
<=> -25x = 3 + 8
<=> -25x = 11
<=> x = \(-\frac{11}{25}\)
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16
x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0
9x - 9 = 0
9x = 9
x = 1
Vậy x ∈ {1}
b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16
x3 + 8 - x3 + 2x - 16 = 0
2x - 8 = 0
2x = 8
x = 4
Vậy x ∈ {4}
c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17
x3 - 25x - x3 - 8 - 17 = 0
-25x - 25 = 0
-25x = 25
x = -1
Vậy x ∈ {1}
d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0
45x - 6 = 0
45x = 6
x = \(\frac{2}{15}\)
Vậy x ∈ {\(\frac{2}{15}\)}
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
1
a) \(\left(3x+1\right)\left(3x-1\right)=9x^2-1\)
\(\left(x+5y\right)\left(x-5y\right)=x^2-25y\)
b) \(\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\)
\(\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)
Bài 3:
a: \(\Leftrightarrow x^2+8x+16-x^2+1=16\)
=>8x+1=0
=>x=-1/8
b: \(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
=>2x+255=0
=>x=-255/2
c: \(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6x^2+12x+6=49\)
=>24x+62=49
=>24x=-13
=>x=-13/24
d: =>x^3+8-x^3-2x=15
=>-2x=15-8=7
=>x=-7/2
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
\(a,\left(x+1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)\(\Leftrightarrow x^3+3x^2+3x+1+8-x^3+3x^2+6x-17=0\)\(\Leftrightarrow6x^2+9x-8=0\)
\(\Leftrightarrow x^2+\dfrac{3}{2}x-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{16}-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right)^2=\dfrac{91}{48}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\sqrt{\dfrac{91}{48}}\\x+\dfrac{3}{4}=-\sqrt{\dfrac{91}{48}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\\x=-\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{273}}{12}\\x=-\dfrac{9+\sqrt{273}}{12}\end{matrix}\right.\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x-15=0\)
\(\Leftrightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)