K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

19 tháng 6 2016

Bài 1: Sử dụng phép thế

Có x - y = 2 => x = 2 + y

Thay x = 2 + y vào các biểu thức cần tính

Bài 2:

\(P=9-2\left|x-3\right|\le9\) dấu bằng <=> x = 3

\(Q=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\) dấu bằng <=> \(\left(x-2\right)\left(8-x\right)\ge0\)

Bài 1:Tìm giá trị của các biểu thức sau:a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)b| C=2|x-2| - 3|1-x| với x=4Bài 2:Rút gọn các biểu thức sau:a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|Bài 3:a)Tìm x biết: |2x+3|=x+2b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổiBài 4:Tìm x...
Đọc tiếp

Bài 1:Tìm giá trị của các biểu thức sau:

a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)

b| C=2|x-2| - 3|1-x| với x=4

Bài 2:Rút gọn các biểu thức sau:

a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|

Bài 3:

a)Tìm x biết: |2x+3|=x+2

b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổi

Bài 4:Tìm x biết:

a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 5: Cho

\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)

\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)

a)Rút gọn A và B

b)Tìm x \(\in\)Z để A<x<B

Bài 6:Tìm giá trị nhỏ nhất của biểu thức

M= |x-2002|+|x-2001|

Bài 7:Tìm x và y biết:

a) 2|2x-3|=\(\frac{1}{2}\)

b) 7,5-3|5-2x|= -4,5

c) |3x-4|+|5y+5|=0

d) |x-7|+2x+5=6

Bài 8:Tìm giá trị nhỏ nhất của biểu thức

a) A=3,7+|4,3-x|

b) B= |3x+8,4|-24,2

c) C= |4x-3|+|5y+7,5|+17,5

Bài 9:Tìm giá trị lớn nhất của biểu thức

a) D=5,5-|2x-1,5|

b) E= -|10,2-3x|-14

c) F=4-|5x-2|-|3y+12|

1
19 tháng 3 2018

Bài 1 và 2 dễ rồi bạn tự làm được 

Bài 3 : 

\(a)\) Ta có : 

\(\left|2x+3\right|\ge0\)

Mà \(\left|2x+3\right|=x+2\)

\(\Rightarrow\)\(x+2\ge0\)

\(\Rightarrow\)\(x\ge-2\)

Trường hợp 1 : 

\(2x+3=x+2\)

\(\Leftrightarrow\)\(2x-x=2-3\)

\(\Leftrightarrow\)\(x=-1\) ( thoã mãn ) 

Trường hợp 2 : 

\(2x+3=-x-2\)

\(\Leftrightarrow\)\(2x+x=-2-3\)

\(\Leftrightarrow\)\(3x=-5\)

\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn ) 

Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)

Chúc bạn học tốt ~ 

11 tháng 9 2017

Bài 3 : 

Vì \(\left(x-2\right)^2\ge0\forall x\)

Nên :  \(A=\left(x-2\right)^2-4\ge-4\forall x\)

Vậy \(A_{min}=-4\) khi x = 2

11 tháng 9 2017

B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)

B2: 

a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)

\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)

b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)

B3:

Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x = 2

Vậy GTNN của A = -4 khi x = 2

Bài 2: 

a: \(x^2+2>=2\)

\(\Leftrightarrow\dfrac{8}{x^2+2}< =4\)

\(\Leftrightarrow B>=-4\)

Dấu '=' xảy ra khi x=0

b: \(4+2\left(x-2\right)^2>=4\)

=>C=1/4+2(x-2)^2<=1/4

Dấu '=' xảy ra khi x=2

Bài 3: 

a: \(\Leftrightarrow\dfrac{x+5-x+3}{x-3}< 0\)

=>x-3<0

=>x<3

b: \(\Leftrightarrow\dfrac{x+3-2x-8}{x+4}>0\)

\(\Leftrightarrow\dfrac{-x-5}{x+4}>0\)

=>(x+5)/(x+4)<0

=>-5<x<-4