K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Bài 1:

\(HPT\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Leftrightarrow a^2+b^2+c^2=0\\ \Leftrightarrow a=b=c=0\left(a^2+b^2+c^2\ge0\right)\\ \Leftrightarrow A=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1+1-1=-1\)

Bài 2: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Bài 3: Xác định a, b, c để x^3 - ax^2 + bx - c = (x - a) (x-b)(x-c) - Lê Tường Vy

15 tháng 9 2018

2 ) b )

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)

24 tháng 11 2022

a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)

\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)

\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)

Để đây là phép chia hết thì a+2=0 và b-1=0

=>a=-2; b=1

b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)

=>bx+a=0

=>a=b=0

Bài 1 1) Phân tích đa thức thành nhân a) \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)b)\(x^4+4\)Bài 2 1) Gải phương trình \(\left(\frac{x+3}{x-2}\right)^2+6.\left(\frac{x-3}{x+2}\right)^2=7.\left(\frac{x^2-9}{x^2-4}\right)\)2) Tìm số nguyên x,y thỏa mãn \(x^2+y^2+5xy+60=37xy\)Bài 3 1)  Cho 3 số  x,y,z đôi một khác nhau thỏa mãn \(x^3+y^3+z^3=3xyz\left(xyz\ne0\right)\)2) Tìm GTLN và GTNN \(A+\frac{27-12x}{x^2+9}\)( bài...
Đọc tiếp

Bài 1 

1) Phân tích đa thức thành nhân 

a) \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)

b)\(x^4+4\)

Bài 2 

1) Gải phương trình \(\left(\frac{x+3}{x-2}\right)^2+6.\left(\frac{x-3}{x+2}\right)^2=7.\left(\frac{x^2-9}{x^2-4}\right)\)

2) Tìm số nguyên x,y thỏa mãn \(x^2+y^2+5xy+60=37xy\)

Bài 3 

1)  Cho 3 số  x,y,z đôi một khác nhau thỏa mãn \(x^3+y^3+z^3=3xyz\left(xyz\ne0\right)\)

2) Tìm GTLN và GTNN \(A+\frac{27-12x}{x^2+9}\)( bài 330 sách NCPT tập 2 )

Bài 4 

1) Cho 2 số chính phương liên tiếp . CMR tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ 

2) Cho \(F\left(x\right)=x^2+ax^2+bx+c\left(a,b,c\in R\right)\)

Biết đa thức F(x) chia cho x+1 dư -4 và chia cho x-2 dư 5

Tính \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)

Bài 5 : Cho O là trung điểm của AB , trên cùng một nửa mặt phẳng chứa AB vẽ tia Ax và By vuông góc với AB.   Trên tia Ax lấy  C , qua O kẻ đường thẳng vuông góc với OC

CMR 1) \(AB^2=4AC.BD\)

2) Kẻ OM vuông góc  với CD. CMR CO là phân giác góc ACD và AC=CM

3) Tia BM cắt Ax tại N . CMR C là trung điểm của AN

4) Kẻ MH vuông góc AB .  CMR AD,BC,MH đồng quy

Câu 6 : Tìm số nguyên n sao cho

\(n^3+2018n=2020^{2019}+4\)

2
14 tháng 4 2019

\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)

Đặt m=x2+5x+4, ta có:

\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)

\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)

Tự làm tiếp :v 

15 tháng 4 2019

\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)

\(=\left(x^2+5x+5\right)^2-1-24\)

\(=\left(x^2+5x+5\right)^2-25\)

\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)

\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(2.a\) Đặt  \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)

Thay vào PT ta được:\(a^2+6b^2=7ab\)

                                \(\Leftrightarrow a^2-7ab+6b^2=0\)  

                                 \(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

                                 \(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

                                  \(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

                                   \(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???