K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)

16 tháng 10 2016

Rút gọn

\(\left(2x+1\right)\left(4x^2-3x+1\right)+\left(2x-1\right)\left(4x^2+3x+1\right)\)

\(=8x^3-12x^2+2x+4x^2-3x+1+8x^3+12x^2+2x-4x^2-3x-1\)

\(=16x^3-2x\)

Phân tích đa thức thnahf nhân tử

\(4y^2+16y-x^2-8x\)

\(=\left(4y^2-x^2\right)+\left(16y-8x\right)\)

\(=\left(2y-x\right)\left(2y+x\right)+8\left(2y-x\right)\)

\(=\left(2y-x\right)\left(2y+x+8\right)\)

Chứng minh .............

Có: \(x^2+x+1=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Kết luận......

 

17 tháng 10 2016

\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)

\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)

\(8x^2+10x-3=0\)

\(8x^2-2x+12x-3=0\)

\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)

\(\left(4x-1\right)\left(2x+3\right)=0\)

\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)

\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)

\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)

\(\left(3x-1\right)\left(x-9\right)=0\)

\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)

20 tháng 10 2016

còn bài cuối thì sao à pn

17 tháng 6 2015

Mình giải cho bạn ở http://olm.vn/hoi-dap/question/104690.html rồi nha

18 tháng 6 2015

Chọn đúng cho mình đi.

Đúng nha

17 tháng 6 2017

chiều mai bn nộp thì làm luôn đi còn hỏi đáp nữa !!!!!!

17 tháng 6 2017

mình làm bài 2 trước nha:

a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y

                        =(a.y+a.y)-(b.y+b.y)

                         =2.a.y-2.b.y

                        =2.y.(a-b)

b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3

29 tháng 10 2022

Bài 3:

a: =>6x(x^2-4)=0

=>x(x-2)(x+2)=0

hay \(x\in\left\{0;2;-2\right\}\)

b: \(\Leftrightarrow9\left(x^2-1\right)-9x^2+6x-1=2\)

=>9x^2-9-9x^2+6x-1=2

=>6x-10=2

=>6x=12

=>x=2

Bài 1: Phân tích đa thức thành nhân tử:

a) Ta có: \(x^3+2x^2-3x-6\)

\(=x^2\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-3\right)\)

b) Ta có: \(\left(x-9\right)\left(x-7\right)+1\)

\(=x^2-7x-9x+63+1\)

\(=x^2-16x+64\)

\(=\left(x-8\right)^2\)

c) Ta có: \(\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2\)

\(=\left(x^2+y^2-17\right)^2-\left(2xy-8\right)^2\)

\(=\left(x^2+y^2-17-2xy+8\right)\left(x^2+y^2-17+2xy-8\right)\)

\(=\left[\left(x^2-2xy+y^2\right)-9\right]\left[\left(x^2+2xy+y^2\right)-25\right]\)

\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-5^2\right]\)

\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-5\right)\left(x+y+5\right)\)

Bài 2:

a) Ta có: \(x+2y=xy+2\)

\(\Leftrightarrow x-xy=2-2y\)

\(\Leftrightarrow x\left(1-y\right)=2\left(1-y\right)\)

\(\Leftrightarrow x\left(1-y\right)-2\left(1-y\right)=0\)

\(\Leftrightarrow\left(1-y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

Vậy: (x,y)=(2;1)