\(\frac{1+8x}{8x+4}=\frac{2x}{6x-3}-\frac{8x^2}{3-12x^2}\)

b)(x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Gọi mẫu số của phân số đó là a \(\left(a\ne0;3\right)\)

Do tử số nhỏ hơn mẫu số 8 đơn vị nên tử số là a - 8

Phân số cần tìm là : \(\frac{a-8}{a}\)

Nếu thêm 2 đơn vị vào tử và bớt đi 3 đơn vị ở mẫu , ta được phân số mới là : \(\frac{a-6}{a-3}\)

Mà phân số mới bằng \(\frac{3}{4}\)

Ta có phương trình :

\(\frac{a-6}{a-3}=\frac{3}{4}\)

\(\Rightarrow4\left(a-6\right)=3\left(a-3\right)\)

\(\Leftrightarrow4a-24=3a-9\)

\(\Leftrightarrow a=15\)

Vậy mẫu số là 15

Tử số là 15 - 8 = 7

Phân số cần tìm là : \(\frac{7}{15}\)

a) ĐKXĐ: \(x\notin\left\{\frac{1}{2};\frac{-1}{2}\right\}\)

Ta có: \(\frac{1+8x}{8x+4}=\frac{2x}{6x-3}-\frac{8x^2}{3-12x^2}\)

\(\Leftrightarrow\frac{8x+1}{4\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}+\frac{8x^2}{3\left(4x^2-1\right)}\)

\(\Leftrightarrow\frac{3\left(8x+1\right)\left(2x-1\right)}{12\left(2x+1\right)\left(2x-1\right)}=\frac{2x\cdot4\cdot\left(2x+1\right)}{12\left(2x+1\right)\left(2x-1\right)}+\frac{32x^2}{12\left(2x-1\right)\left(2x+1\right)}\)

Suy ra: \(3\left(8x+1\right)\left(2x-1\right)=8x\left(2x+1\right)+32x^2\)

\(\Leftrightarrow3\left(16x^2-8x+2x-1\right)=16x^2+8x+32x^2\)

\(\Leftrightarrow3\left(16x^2-6x-1\right)=48x^2+8x\)

\(\Leftrightarrow48x^2-18x-3-48x^2-8x=0\)

\(\Leftrightarrow-26x-3=0\)

\(\Leftrightarrow-26x=3\)

hay \(x=-\frac{3}{26}\)

Vậy: \(S=\left\{-\frac{3}{26}\right\}\)

b) Ta có: \(\left(x-2\right)\left(x-3\right)< \left(x-4\right)^2-2\left(x+3\right)\)

\(\Leftrightarrow x^2-5x+6< x^2-8x+16-2x-6\)

\(\Leftrightarrow x^2-5x+6< x^2-10x+10\)

\(\Leftrightarrow x^2-5x+6-x^2+10x-10< 0\)

\(\Leftrightarrow5x-4< 0\)

\(\Leftrightarrow5x< 4\)

hay \(x< \frac{4}{5}\)

Vậy: S={x|\(x< \frac{4}{5}\)}

7 tháng 2 2019

17. Nửa chu vi miếng đất là: \(48:2=24\left(m\right)\)

Gọi chiều rộng, chiều dài miếng đất ban đầu lần lượt là a (m) và b (m) \(\left(0< a;b< 24\right)\)

Theo bài ra, ta có:

\(\hept{\begin{cases}a+b=24\\\left(a-2\right)\left(b+6\right)-ab=12\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=24\\6a-2b=24\end{cases}}\Leftrightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)(thỏa mãn)

Diện tích miếng đất ban đầu là: \(a.b=9.15=135\left(m^2\right)\)

            

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

5 tháng 3 2017

a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}

23 tháng 4 2017

 a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

 \(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)

 \(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)

 \(\Leftrightarrow0x=0\)(vô số nghiệm)

nghiệm x thỏa mãn phương trình S \(\in\)R  với   \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

 b) ĐKXĐ  \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\) 

 \(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\) 

 \(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)

nghiệm x thỏa mãn phương trình S \(\in\)R  với   \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)