Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Trong ΔABC, góc A = 90o
Ta có: BC2 = AB2 + AC2 ( Py ta go)
Hay: BC2 = 62 + 82
= 36 + 64
= 100
Vậy BC = 10 cm
b) Xét ΔBAM và ΔBNM, có:
góc BAM = góc BNM = 90o (gt)
BM: cạnh chung
góc ABM = góc NBM (gt)
Vậy ΔBAM = ΔBNM ( cạnh huyền- cạnh góc vuông)
c) Xét ΔMAP và ΔMNC , có:
góc MAP = góc MNC = 90o (gt)
AM = NM ( 2 cạnh t/ư do ΔBAM = ΔBNM)
góc AMP = góc NMC ( 2 góc đối đỉnh)
Vậy ΔMAP = ΔMNC ( g. c. g)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
Bài 1)
a) Trong ∆ cân ABC có AH là trung trực đồng thời là phân giác và trung tuyến
=> BAH = CAH
Xét ∆ ABD và ∆ ACD ta có :
AB = AC (∆ABC cân tại A)
AD chung
BAH = CAH (cmt)
=> ∆ABD = ∆ACD (c.g.c)
=> BD = CD
=> ∆BDC cân tại D
* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )
Mà DH = HG
=> DG < DB
=> DG ko thể = BD và DC
b) Xét ∆ABG và ∆ACG ta có :
AG chung
BAH = CAH (cmt)
AB = AC (cmt)
=> ∆ABG = ∆ACG (c.g.c)(dpcm)
c) Vì AH = 9cm (gt)
Mà AD = 2/3AH
=> AD = 6cm
=> DH = 9 - 6 = 3 cm
Mà AH là trung tuyến BC
=> BH = HC = BC/2 = 4 cm
Áp dụng định lý Py ta go vào ∆ vuông BHD ta có
=> BD = 5 cm
Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có :
BC = 10 cm
b) Xét ∆ vuông ABM và ∆ vuông BMC ta có :
BM chung
ABM = CBM ( BM là phân giác)
=> ∆ABM = ∆BMC ( ch - gn )
c) Vì ∆ABM = ∆BMC (cmt)
=> AM = NM
Xét ∆ vuông APM và ∆ MNC ta có :
AM = NM (cmt)
AMP = NMC ( đối đỉnh)
=> ∆APM = ∆MNC ( cgv - gn )
d) Vì ∆ APM = ∆MNC (cmt)
=> PM = MC
=> ∆MPC cân tại M
Mà K là trung điểm PC
=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC
=> MK vuông góc với PC
=> M; K thẳng hàng
Mà BM là phân giác ABC
=> B ; M thẳng hàng
=> B ; M ; K thẳng hàng