K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

a) Ta có: \(x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)

\(=\left(x+4\right)^3\)

b) Ta có: \(x^3-12x^2+48x-64\)

\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)

\(=\left(x-4\right)^3\)

c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)

\(=\left(2x+y\right)^3\)

d)Sửa đề: \(x^3-3x^2+3x-1\)

Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

e) Ta có: \(8-12x+6x^2-x^3\)

\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)

\(=\left(2-x\right)^3\)

f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)

\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)

\(=\left(\frac{1}{3}-3y\right)^3\)

12 tháng 9 2020

thanks bạn

23 tháng 2 2020

Bài 1 : Khai triển :

a, \(\left(x+5\right)^2=x^2+10x+25\)

b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)

c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)

d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)

e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)

g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)

h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

14 tháng 8 2016

Đăng từng bài thôi bạn ơi

14 tháng 8 2016

cj on ruayf hả

a)

A = \(\left(2x\right)^3+3.\left(2x\right)^2.y+3.\left(2x\right).y+y^3\)

= \(\left(2x+y\right)^3\)

b)

\(B=x^3-3.x^2.1+3.x.1-1^3\)

= \(\left(x-1\right)^3\)

4 tháng 8 2018

a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)

\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)

\(=xy^2-\dfrac{x}{3}+1\)

b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)

\(=2\left(x+y\right)^2\)

c) \(\dfrac{8x^3+27y^3}{2x+3y}\)

\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)

\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)

\(=4x^2-6xy+9y^2\)

d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)

\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)

\(=16x^2y-4y^3+2\)

13 tháng 9 2017

2.

a) . -x3 + 3x2 - 3x + 1

=13-3.12x+3.1.x2-x3

=(1-x)3

b)8- 12x + 6x2 - x3

=23-3.22.x+3.2.x2-x3

=(2-x)3

13 tháng 9 2017

3.

a) x3 + 12x2 + 48x + 64 tại x = 6

=x3+3.x2.4+3x4+432

=(x+4)3thay x=6 ta được :

(6+4)3=103=1000

b) x3 - 6x2 + 12x - 8 tại x= 22

=x3-3.x2.2+3.x.22 -23

=(x-2)3 thay x=22 ta đc:

=(22-2)3=203=8000

10 tháng 9 2017

3.

a, (2y- 1)3= (2y)3-3.(2y)2.1+3.2y.12-13

= 8y3-12y2+6y-1

b, (3x2+2y)3=(3x2)3+3.(3x2)2.2y+3.3x2.(2y)2+13

=27x6+54x4y+36x2y2+1

c, ( 1/3x-2)3=(1/3x)3-3.(1/3x)2.2+3.1/3x.22-23

=1/27x3-2/3x2+4x-8

4.

a, -x3+3x3-3x+1=1-3x+3x3-x3

=1-3.12.x+3.1.x3-x3

=(1-x)3

b,64-48x+12x2-x3=43-3.42.x+3.4.x2-x3

=(4-x)3

10 tháng 9 2017

Bài 3 Tính:

\(a\)) \(\left(2y-1\right)^3=2y^3-3.\left(2y\right)^2.1+3.2y.1^2-1^3\)

\(=2y^3-12y^2+6y-1\)

b)\(\left(3x^2+2y\right)^3\)

\(=\left(3x^2\right)^3=3.\left(3x^2\right)^2.2y+3.\left(3x^2\right).\left(2y\right)^2+\left(2y\right)^3\)

\(=27x^8+3.9x^4.2+9x^2.4y+8y^3\)

\(=27x^8+54x^4+36x^2y+8y^3\)

c)\(\left(\dfrac{1}{3}x-2\right)^3\)

\(=\left(\dfrac{1}{3}x\right)^3-3.\left(\dfrac{1}{3}x\right)^2.2+3.\dfrac{1}{3}x.2^2-2^3\)

\(=\dfrac{1}{27}x^3-3.\dfrac{1}{9}x^2.2+x.2^2-8\)

\(=\dfrac{1}{27}x^3-\dfrac{2}{3}x^2+4x-8\)