K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

2.

Ta có : \(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)

để A là số nguyên thì \(\frac{3}{n+2}\)là số nguyên

\(\Rightarrow3⋮n+2\)

\(\Rightarrow\)n + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }

Lập bảng ta có :

n+21-13-3
n-1-31-5

Vậy n \(\in\){ -1 ; -3 ; 1 ; -5 }

3. 

\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)

\(=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)

\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)

\(=97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

gọi \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)( 1 )

\(3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)( 2 )

Lấy ( 2 ) trừ ( 1 ) ta được :

\(2B=1-\frac{1}{3^{98}}< 1\)

\(\Rightarrow B=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)

\(\Rightarrow97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 100\)

4.

đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)

\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)

\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)

\(5A=1-\frac{1}{31}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{31}}{5}< \frac{1}{5}< 1\)

6 tháng 5 2017

Ta có : \(2A=2.\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)

            \(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)

\(A=2+2^3+2^4+2^5+...+2^{2016}+2^{2017}-1-2-2^2-2^3-...-2^{2015}-2^{2016}\)

\(A=2^{2017}-1\)

7 tháng 5 2017

Mk làm bai 1 thôi:

\(A=1+2+2^2+2^3+...+2^{2015}+2^{2016}\)

\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+2^4+...+2^{2015}+2^{2016}\right)\)

\(A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}-1-2-2^2-2^3-2^4-...-2^{2016}-2^{2017}\)

\(A=2^{2017}-1\)

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và Bb. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyênd. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​...
Đọc tiếp

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và B

b. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2

c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyên

d. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​ trị​ nguyên

Bài 2:

a. tính​ tổng​ 20 số​ hạng​ đ​ầu​ tiên​ của​ dãy​ sau : 1 phần​ 1.2 , 1 phần​ 2.3 , 1 phần 3.4 , ...

b. tính​ tổng​ 5 số​ hạng đ​ầu​ tiên​ của​ dãy​ số​ sau : 5 phần​ 6 , 5 phần​ 66 , 5 phần​ 176 , 5 phần 336 ,.......

c. cho biểu​ thức​ : A = 5 mũ​ 2 phần​ 1.6 + 5 mũ​ 2 phần​ 6.11 +...+ 5 mũ​ 2 phần​ 26.31.       Chứng​ tỏ A > 1

2
4 tháng 5 2018
1/a, -Ta có: $B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$ -Vậy: B
4 tháng 5 2018

1/a,

-Ta có: 

$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$

-Vậy: B<A

b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$

$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$

$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$

$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$

$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$

4 tháng 7 2018

1/a

3/5 - 3 < 2/3 x + 3/4 < 1/2 + 7/9

=> 3/5 - 3 - 3/4 < 2/3 x < 1/2 + 7/9 - 3/4

=> -63/20 < 2x/3 < 19/36

=> -567/180 < 120x/180 < 95/180

=> 120x \(\in\left\{0;-120;-240;-360;-480\right\}\)

=> x \(\in\left\{0;-1;-2;-3;-4\right\}\)

1/b

( 3x + 5 )( 2x - 7 ) < 0

=> 3x + 5 > 0 và 2x - 7 < 0 
hoặc 3x + 5 < 0 và 2x - 7 > 0 

TH1 : 3x + 5 > 0 và 2x - 7 < 0 
Vì 2x - 7 < 0 
=> x < 4
=> x \(\in\) { 0 ; 1 ; 2 ; 3 } 
TH2 : 3x + 5 < 0 và 2x - 7 > 0 
Vì 2x - 7 > 0 
=> x > 3 ( 1 )
Vì 3x + 5 < 0 
=> x là số nguyên âm ( 2 )
Do ( 1 ) mâu thuẫn với ( 2 ) nên ko tồn tại x ở TH này .
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 }

4 tháng 7 2018

2  . Gọi 4 số tự nhiên liên tiêp là a , a + 1 , a + 2 , a + 3
 a ( a + 2 ) + 9 = ( a + 2 )( a + 3 ) 
 a^2 + 2a + 9 = a^2 + 3a + 2a + 6
 a^2 + 2a + 9 = a^2 + 5a + 6
 3 = 3a
=> a = 1 
Vậy 4 số tự nhiên liên đó là 1 , 2 , 3 , 4

11 tháng 2 2019

Bạn chỉ gửi 1 bài thôi chứ nhiều quá làm mỏi tay lắm

Làm bài 1 trước

\(4\cdot(-5)^2+2\cdot(-5)-20\)

\(=4\cdot25+2\cdot(-5)-20\)

\(=100+(-10)-20=100-30=70\)

\(35\cdot(14-10)-14\cdot(35-10)\)

\(=35\cdot14-35\cdot10-14\cdot35-14\cdot10\)

\(=35\cdot14-14\cdot35-35\cdot10-14\cdot10\)

\(=35\cdot10-14\cdot10=(35-14)\cdot10=210\)

\(3\cdot(-5)^2+2\cdot(-5)-20\)

Tương tự như ở câu trên

\(34\cdot(15-10)-15\cdot(34-10)\)

Tương tự như câu thứ 2

Câu cuối tự làm

26 tháng 10 2016

bài 2: n=6