K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6z^2=5\)

\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3-x\left(x^2-1\right)+6x^2=5\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2=5\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

Vậy x = 1

26 tháng 7 2018

Nhân hết ra là xong, ez ghê

\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=10\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=10\)

\(\Leftrightarrow18x-2=10\Leftrightarrow x=\frac{2}{3}\)

6 tháng 7 2019

Nhầm 1 chút nhé, Bài 1 câu a) ( x^2 - 5x ) . ( x^2 - x +3) - ( x^3 - x^2 +1) . ( 2x - 1 )

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

8 tháng 7 2017

\(\left(x+3\right)^3-x\left(3x-1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2-6x+1\right)+8x^3-4x^2+2x+4x^2-2x+1=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3-4x^2+2x+4x^2-2x+1-28=0\)

\(\Leftrightarrow15x^2+26x=0\)

\(\Leftrightarrow15x\left(x+\frac{26}{15}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}15x=0\\x+\frac{26}{15}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{26}{15}\end{cases}}}\)