Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 4 60 O
Ta có : \(\widehat{BAO}=\frac{1}{2}\widehat{BAD}=\frac{1}{2}60^o=30^o\)
Mà tam giác AOB vuông tại O, lại có \(\widehat{BAO}=30^o\)
\(\Rightarrow OB=\frac{1}{2}AB=\frac{1}{2}.4=2\left(cm\right)\)
Áp dụng định lý Pi- ta - go vào tam giác AOB có :
\(AO=\sqrt{AB^2-BO^2}=\sqrt{4^2-2^2}\)
\(=\sqrt{16-4}=\sqrt{12}\left(cm\right)\)
Có \(BO=2\Rightarrow BD=2BO=2.2=4\left(cm\right)\)
\(S_{htABCD}=\frac{1}{2}AC.BD=AO.BD=\sqrt{12}.4=8\sqrt{3}\left(cm^2\right)\)
Bài 1
\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
Bài 2
Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)
\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)
\(\Rightarrow a=1\)
\(\Rightarrow b+ac=0\)
\(\Rightarrow bc+a=-3\)
\(\Rightarrow b=-2\)
Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được
\(\Leftrightarrow-2+c=0\Rightarrow c=2\)
Vậy \(a=1;b=-2;c=2\)
Bài 3
Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)
\(\Rightarrow b=2x-1\)
Bài 4 (cũng làm tương tự như bài 3 nhé )
Bài 5(bài nãy dễ nên bạn tự làm đi nhé)
Bài 6
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)
Bài 7
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Rightarrow a-b=0\Rightarrow a=b\)
\(\Rightarrow b-c=0\Rightarrow b=c\)
\(\Rightarrow a-c=0\Rightarrow a=c\)
Vậy \(a=b=c\)
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)