K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

1)

\(\left|2x-27\right|^{2011}\ge0\\ \left(3y+10\right)^{2012}\ge0\\ \text{Đ}\text{ể}\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\\ \Leftrightarrow\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\\ \Rightarrow x=13,5;y=-\frac{13}{3}\)

2) \(H=\left|x-3\right|+\left|4+x\right|\\ tac\text{ó}:\left|x-3\right|\ge0\\ \left|4+x\right|\ge0\)

Mà |x-3| khác |4+x| ; |x-3|<|4+x|

=>|x-3|=0

=>x=3

Vậy GTNN của H=0+7=7

3) \(P=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

P nguyên khi \(\frac{5}{n-1}nguy\text{ê}n\)

=> \(5⋮n-1\\ \Rightarrow n-1\in\text{Ư}\left(5\right)=\left\{1;5;-1;-5\right\}\\ \Rightarrow b\in\left\{2;6;0;-4\right\}\)

Chúc bạn học tốt!!

8 tháng 1 2017

Thanks you very much !

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)

1 tháng 2 2017

Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn

Vì \(\left(2x-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)

Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

15 tháng 1 2017

Câu 1:

\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\in Z\)

\(\Rightarrow1⋮n-1\)

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{2;0\right\}\)

15 tháng 1 2017

Câu 2:

Từ \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{2}=30\Rightarrow a=30\cdot2=60\\\frac{b}{\frac{3}{2}}=30\Rightarrow b=30\cdot\frac{3}{2}=45\\\frac{c}{\frac{4}{3}}=30\Rightarrow c=30\cdot\frac{4}{3}=40\end{matrix}\right.\)

Bài 1:Tìm giá trị của các biểu thức sau:a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)b| C=2|x-2| - 3|1-x| với x=4Bài 2:Rút gọn các biểu thức sau:a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|Bài 3:a)Tìm x biết: |2x+3|=x+2b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổiBài 4:Tìm x...
Đọc tiếp

Bài 1:Tìm giá trị của các biểu thức sau:

a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)

b| C=2|x-2| - 3|1-x| với x=4

Bài 2:Rút gọn các biểu thức sau:

a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|

Bài 3:

a)Tìm x biết: |2x+3|=x+2

b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổi

Bài 4:Tìm x biết:

a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 5: Cho

\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)

\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)

a)Rút gọn A và B

b)Tìm x \(\in\)Z để A<x<B

Bài 6:Tìm giá trị nhỏ nhất của biểu thức

M= |x-2002|+|x-2001|

Bài 7:Tìm x và y biết:

a) 2|2x-3|=\(\frac{1}{2}\)

b) 7,5-3|5-2x|= -4,5

c) |3x-4|+|5y+5|=0

d) |x-7|+2x+5=6

Bài 8:Tìm giá trị nhỏ nhất của biểu thức

a) A=3,7+|4,3-x|

b) B= |3x+8,4|-24,2

c) C= |4x-3|+|5y+7,5|+17,5

Bài 9:Tìm giá trị lớn nhất của biểu thức

a) D=5,5-|2x-1,5|

b) E= -|10,2-3x|-14

c) F=4-|5x-2|-|3y+12|

1
19 tháng 3 2018

Bài 1 và 2 dễ rồi bạn tự làm được 

Bài 3 : 

\(a)\) Ta có : 

\(\left|2x+3\right|\ge0\)

Mà \(\left|2x+3\right|=x+2\)

\(\Rightarrow\)\(x+2\ge0\)

\(\Rightarrow\)\(x\ge-2\)

Trường hợp 1 : 

\(2x+3=x+2\)

\(\Leftrightarrow\)\(2x-x=2-3\)

\(\Leftrightarrow\)\(x=-1\) ( thoã mãn ) 

Trường hợp 2 : 

\(2x+3=-x-2\)

\(\Leftrightarrow\)\(2x+x=-2-3\)

\(\Leftrightarrow\)\(3x=-5\)

\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn ) 

Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)

Chúc bạn học tốt ~