Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a./ \(\Leftrightarrow x^{10}=1\Leftrightarrow x=\pm1\)
b./ \(\Leftrightarrow x^{10}-x=0\Leftrightarrow x\left(x^9-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^9=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c./ \(\Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\Leftrightarrow\left(2x-15\right)^3\left(\left(2x-15\right)^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
- 2x - 15 = 0 \(\Leftrightarrow x=\frac{15}{2}\)
- 2x - 15 = 1 \(\Leftrightarrow x=\frac{16}{2}=8\)
- 2x - 15 = -1 \(\Leftrightarrow x=\frac{14}{2}=7\)
a) 2x - 15 = 17
2x = 25
b) ( 7x - 11 )3 = 25. 52 + 200
(7x - 11)3 = 32 . 25 + 200
(7x -11)3 = 1000
(7x-11)3 = 103
7x - 11 = 10
7x = 10+11
7x = 21
x = 21 : 7
x = 3
like nha
e) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left(2x-15\right)^2-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3=0\) hoặc \(\left(2x-15\right)^2-1=0\)
+)TH1: \(\left(2x-15\right)^3=0\)
\(\Rightarrow2x-15=0\)
\(\Rightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
+)TH2: \(\left(2x-15\right)^2-1=0\)
\(\Rightarrow\left(2x-15\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=1\\2x-15=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=16\\2x=14\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
Vậy \(x=\frac{15}{2}\) hoặc \(x=8\) hoặc \(x=7\)
a) \(2^x-17=15\Rightarrow2^x=32\)
Mà \(2^5=32\Rightarrow x=5\)
Vậy x = 5
b)\(\left(7x-11\right)^3=2^5\cdot5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
Vậy x = 3
c)\(x^{10}=1^x\Rightarrow x^{10}=1\)(số 1 có luỹ thừa là bao nhiêu thì vẫn là 1 thui)\(\Rightarrow x=1\)
Vậy x = 1
d) \(x^{10}=x\Rightarrow x^{10}-x=0\)
\(\Rightarrow x\left(x^9-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^9-1=0\)
+)TH1: \(x=0\)
+)TH2: \(x^9-1=0\Rightarrow x^9=1\Rightarrow x=1\)
Vậy x = 0 hoặc x = 1
Ta có 2x + 1 . 3y = 10x
=> 2x.3y.2 = 10x
=> 3y.2 = 5x
=> 3y.2 = (...5)
=> 3y = (...5) : 2
Vì 5y tận cùng là 5
=> 5y không chia hết cho 2
=> Không tồn tại x;y \(\inℕ\)thỏa mãn
=> \(x;y\in\varnothing\)
b) 10x : 5y = 20y
=> 10x = 4y
=> x = y = 0
c) (2x - 15)5 = (2x - 15)3
(2x - 15)5 - (2x - 15)3 = 0
=> (2x - 15)3[(2x - 15)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{7,5;8;7\right\}\)
Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)
\(5\left(x+4\right)-3\left(x-2\right)=x\)
\(\Leftrightarrow5x+20-3x+6=x\)
\(\Leftrightarrow2x+26=x\)
\(\Leftrightarrow2x-x=-26\)
\(\Leftrightarrow x=-26\)
\(\left(x-3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=-1\Rightarrow\varnothing\end{cases}\Leftrightarrow x=3}\)
a: =>15-(x-2)=-13-27=-40
=>x-2=15+40=55
hay x=57
b: =>5-x=-114+12=-102
=>x=107
c: \(\Leftrightarrow\left|x\right|=-1-5=-6\)(vô lý)
d: \(\Leftrightarrow\left|x-3\right|=3\)
=>x-3=3 hoặc x-3=-3
=>x=6 hoặc x=0
bai2.
a. x=1
b.x=0;1
c.x=8