Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
a)\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
mk ko biết bn có sai đề ko nhưng mk chỉ lm theo ý mk hiểu thôi! sai thì thôi nha!
bn làm như vầy nè
a=1/51+1/52+...+1/100
A=1/3.1/7 + 1/2.1/26+....1/2.1/50
A=1/3-1/7+1/2-1/26+...1/2-1/50
A=1/3-1/50
A=47/50
như vầy đó bn tin mik đi
Mình ko chép đề nx nha
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\)
A = \(\frac{1}{1}-\frac{1}{1000}\)
A = \(\frac{1000}{1000}-\frac{1}{1000}=\frac{999}{1000}\)
B = \(\frac{1}{501}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{999}+...\frac{1}{1}+...+\frac{1}{999}-\frac{1}{502}+\frac{1}{1000}+\frac{1}{501}\)
B = \(\frac{1}{501}-\frac{1}{501}+\frac{1}{1000}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{502}+\frac{1}{999}-\frac{1}{999}+...+\frac{1}{1}\)
B = \(\frac{1}{1}=1\)
Vậy \(\frac{A}{B}=\frac{\frac{999}{1000}}{1}=\frac{999}{1000}\)
1/1 . 2 + 1/ 3 . 4 + 1/5 . 6 + ...+ 1/99 . 100
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/99 - 1/100
= ( 1 + 1/3 + 1/5 + ...+ 1/99 ) - ( 1/2 + 1/4 + ...+ 1/100 )
= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - 2 . ( 1/2 + 1/4 + ...+ 1/100 )
= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - ( 1 + 1/2 + ...+ 1/50 )
= 1/51 + 1/52 + ...+ 1/100
Tham khảo nha !!!
\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) (đpcm)
A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102
A=1-1/102=102/102-1/102=101/102
ý b thì chờ mình tí tìm cách lập luận đã nhé
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=1-\frac{1}{102}\)
\(A=\frac{101}{102}\)
\(A=\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
( gạch bỏ các phân số giống nhau)
\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(A=\frac{1}{4}+\frac{2}{9}\)
\(A=\frac{17}{36}\)
phần b, c bn lm tương tự như phần a nha
b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)
\(B=1-\frac{1}{2015}\)
\(B=\frac{2014}{2015}\)
a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
còn lại tự giải nha gần giống như phần b thôi cũng thú vị.
ủng hộ nha