Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y+4z}{1-1-2}=\frac{48}{-2}=-24\)
=> \(\hept{\begin{cases}2x=-24\\3y=-24\\-2z=-24\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}}\)
\(2c=3y=-2zz\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{2}=\frac{-4z}{2}\)
Áp dụng tính chất của tỉ số bằng nhau ta có :
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}\)
Ta có:
\(2x=3y=-2z\) hay \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-3}\)
Từ \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-3}\) suy ra \(\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{4z}{-12}\)
Áp dụng tính chất cơ bản của phân số, ta có:
\(\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{4z}{-12}=\dfrac{2x-3y+4z}{6-6+\left(-12\right)}=\dfrac{48}{-12}=-4\)
\(\Rightarrow x=-4\cdot3=-12\)
\(\Rightarrow y=-4\cdot2=-8\)
\(\Rightarrow z=\left(-4\right)\cdot\left(-3\right)=12\)
\(3x=4y;2y=5z\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
\(=\dfrac{2x+3y-5z}{40+45-30}=\dfrac{55}{55}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.20=20\\y=1.15=15\\z=1.6=6\end{matrix}\right.\)
Tương tự
Ta có :
\(2x+3y-5z=55\)
\(3x=4y;2y=5z\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{2}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+3y-5z}{2.19+3.12-2.16}=\dfrac{55}{22}=\dfrac{5}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{45}{2}\\\dfrac{y}{12}=\dfrac{5}{2}\Leftrightarrow x=30\\\dfrac{z}{16}=\dfrac{5}{2}\Leftrightarrow z=40\end{matrix}\right.\)
Vậy ..............
Từ \(2x=3y=-2z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{-\dfrac{1}{2}}\)
\(\Rightarrow\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}=\dfrac{2x-3y+4z}{1-1+\left(-2\right)}=\dfrac{48}{-2}=-24\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{1}{2}}=-24\cdot\dfrac{1}{2}=-12\\\dfrac{y}{\dfrac{1}{3}}=-24\Rightarrow y=-24\cdot\dfrac{1}{3}=-8\\\dfrac{z}{-\dfrac{1}{2}}=-24\Rightarrow z=-24\cdot\left(-\dfrac{1}{2}\right)=12\end{matrix}\right.\)
\(2x=3y=-2z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{-1}{2}}\)
\(\Rightarrow\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
\(=\dfrac{2x-3y+4z}{1-1+-2}=\dfrac{48}{-2}=-24\)
Áp dụng tính
Có: \(2x=3y=-2z\)
=> \(2x=3y\) và \(3y=-2z\)
=> \(\frac{x}{3}=\frac{y}{2}\) và \(\frac{y}{-2}=\frac{z}{3}\)
=> \(\frac{x}{3}=\frac{y}{2}\) và \(\frac{y}{2}=\frac{-z}{3}\)
=> \(\frac{x}{3}=\frac{y}{2}=-\frac{z}{3}\)
=>\(\frac{2x}{6}=\frac{-3y}{-6}=\frac{4z}{-12}=\frac{2x-3y+4z}{6-6-12}=\frac{48}{-12}=-4\)
+) \(2x=6\cdot-4=-24\Rightarrow x=-12\)
+)\(-3y=-6\cdot-4=24\Rightarrow y=-8\)
+)\(4z=-12\cdot-4=48\Rightarrow x=12\)
Từ 2x=3y= - 2 z
\(\Rightarrow\frac{2x}{6}=\frac{3y}{6}=-\frac{2z}{6}\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{6}=\frac{4z}{-12}=\frac{2x-3y+4z}{6-6+12}=\frac{48}{-12}=-4\)
\(\Rightarrow\begin{cases}x=-24\\y=-8\\z=12\end{cases}\)