Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a ) = (x+y)3 -(x+y)
= (x+y)[(x+y)2+1]
c) = 5(x2-xy+y2)-20z2
=5(x-y)2-20z2
= 5 [ (x-y)2- 4z2 ]
=5(x-y-4z)(x-y+4z)
Bài 1:
a) x3-x+3x2y+3xy2+y3-y
=x3+2x2y-x2+xy2-xy+x2y+2xy2-xy+y3-y2+x2+2xy-x+y2-y
=x(x2+2xy-x+y2-y)+y(x2+2xy-x+y2-y)+(x2+2xy-x+y2-y)
=(x2+2xy-x+y2-y)(x+y+1)
=[x(x+y-1)+y(x+y-1)](x+y+1)
=(x+y-1)(x+y)(x+y+1)
c) 5x2-10xy+5y2-20z2
=-5(2xy-y2+4z2-2)
Bài 2:
5x(x-1)=x-1
=>5x2-6x+1=0
=>5x2-x-5x+1
=>x(5x-1)-(5x-1)
=>(x-1)(5x-1)=0
=>x=1 hoặc x=1/5
b) 2(x+5)-x2-5x=0
=>2(x+5)-x(x+5)=0
=>(2-x)(x+5)=0
=>x=2 hoặc x=-5
a)
\(10x^2+10xy+5x+5y\)
\(=10x\left(x+y\right)+5\left(x+y\right)\)
\(=5\left(x+y\right)\left(2x+1\right)\)
b)
\(x^3+x^2-x-1\)
\(=x^2\left(x+1\right)-\left(x+1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
c)
\(x+2a\left(x-y\right)-y\)
\(=\left(x-y\right)+2a\left(x-y\right)\)
\(=\left(x-y\right)\left(2a+1\right)\)
d)
\(x^2-y^2+7x-7y\)
\(=\left(x+y\right)\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
1)
a) (x+y)3-(x+y)= (x+y)(x+y-1)
b) xem lại đề câu B nha bạn
2)
a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc=0
(a+b)3+c3-3ab(a+b+c)=0
(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)=0
(a+b+c)(a2+b2+c2-xy-yz-xz)=0
Suy ra: a3+b3+c3=3abc
1. a) = (x+y)3 -(x+y) =(x+y)((x+y)2 -1)
= (x+y)(x+y+1)(x+y-1)
b) = 5(( x-y)2 - 4z2)
= 5( x-y +2z)(x-y-2z)
2. áp dụng ( a+b+c)3 = .....rồi biến đổi
\(x^2+4x+3\)
\(=\left(x+1\right)\left(x+3\right)\)
\(2x^2+3x-5\)
\(\left(x-1\right)\left(x+\frac{5}{2}\right)\)
1)\(x^4+2x^3+x^2\)
=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra
=\(x^2\left(x+1\right)^2\)
2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
=\(\left(x+y\right)^3-\left(x+y\right)\)
=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)
3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)
=\(\left(x+y\right)^2-4z^2\)
=\(\left(x+y+2z\right)\left(x+y-2z\right)\)
4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)^2\)
=\(\left(x-y\right)\left(2-x+y\right)\)
k chi nha
a) x4 + 2x3 + x2 = x2.(x2 + 2x + 1) = x2(x + 1)2
b) x3 - x + 3x2y + 3xy2 + y3 - y = x3 + 3x2y + 3xy2 + y3 - x - y = (x + y)3 - (x + y) = (x + y)[(x + y)2 - 1] = (x + y - 1)(x + y)(x + y + 1)
c) 5x2 - 10xy + 5y2 - 20z2 = 5.(x2 - 2xy + y2 - 4z2) = 5[(x - y)2 - (2z)2] = 5(x - y - 2z)(x - y + 2z)
\(a,x^4+2x^3+x^2=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
\(b,x^3-x+3x^2y+3xy^2+y^3-y=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(c,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left[\left(x-y+2z\right)\left(x-y-2z\right)\right]\)
a)x2+2xy+y2-x-y-12
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(t=x+y\) ta có:
\(t^2-t-12=t^2+3t-4t-12\)
\(=t\left(t+3\right)-4\left(t+3\right)\)
\(=\left(t-4\right)\left(t+3\right)\)
\(=\left(x+y-4\right)\left(x+y+3\right)\)
a, \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left(2x+3y\right)\left(4x^2-12xy+9y^2\right)\)
b, \(5x^2\left(x-1\right)+10xy\left(x-1\right)-5y^2\left(1-x\right)\)
\(=\left(5x^2+10xy+5y^2\right)\left(x-1\right)=5\left(x^2+2xy+y^2\right)\left(x-1\right)=5\left(x+1\right)^2\left(x-1\right)\)
bổ sung phần a hộ mình
\(=2\left(2x+3y\right)\left(4x^2-12xy+9y^2\right)=2\left(2x+3y\right)\left(2x-3y\right)^2\)