Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tổng 3 góc trong của 1 tam giác
góc A + góc B + góc C = 180 độ
góc A = 180 độ - góc B - góc C
góc A = 180 độ - 70 độ - 50 độ
góc A = 60 độ
a) Theo quan hệ giữa góc và cạnh đối diện:
Vì góc B > góc A > góc C
Suy ra cạnh AC>BC>AB
b) Xét tam giác OBD và tam giác OAC có:
OA=OB
OC=OD
góc DOB = góc COA (đối đỉnh)
=> tam giác OBD = tam giác OAC (c.g.c)
=> góc OAC = góc OBD (góc tương ứng)
mà chúng so le trong
nên AC // BD
Ta có :\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
\(\Rightarrow\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(70+50\right)=60\)
Ta lại có : \(\widehat{B}>\widehat{A}>\widehat{C}\left(70>60>50\right)\)
\(\Rightarrow AC>BC>AB\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH=50/2=25 độ
c: góc AKC=góc AHC=90 độ
=>AKHC nội tiếp
=>góc KAH=góc KCH
* Theo mình thì phần a) Góc A = 90 độ sẽ hợp lý hơn chứ. Vậy nên mình sẽ làm theo cả hai góc A 90 độ và 80 độ nhé ( Nhưng bài của mình phần b) sẽ theo góc A = 90 độ )
a)
Góc A = 80 độ thì sẽ có thể tam giác ABC là tam giác cân, tam giác ⊥ tại B hoặc C, tam giác ABC là tam giác tù hoặc tam giác nhọn
Góc A = 90 độ thì tam giác ABC là tam giác vuông tại A
b)
Theo phần a), ta có: Tam giác ABC cân tại A
=> Góc B = góc C = ( 180 độ - 70 độ ) : 2 = 55 độ
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
Tính chất của tam giác cân: 2 góc ở đáy thì bằng nhau
Vậy góc ở đáy còn lại là: 500
Vậy góc ở đỉnh là: 180 - (50+50) = 180- 100 = 80
Vậy góc ở đỉnh là 800
Vì tam giác ABC cân A nên góc B = góc C = 70
Góc A + góc B + góc C = 180° ( tổng 3 góc trong tam giác)
=> Góc A = 180 - 70 x 2 = 40°
BC>AB>AC