\(n\perp AB\) tại B, \(\widehat{F_1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

a) Ta có: OA ⊥ OM (GT)

\(\Rightarrow\widehat{AOM}=90^0\)

Ta có: OB ⊥ ON (GT)

\(\Rightarrow\widehat{BON}=90^0\)

b)

Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)

=> Góc AON = Góc BOM

17 tháng 8 2020

THANKhihi

28 tháng 6 2017

Đêm qua em hỏi, chị lại ko nghĩ là em :V

Bài 1:

A D C B M N 1 1 1 2

*Hình ảnh chỉ mang tính chất minh họa

a) Ta có: \(xy\)\(//BD\)

\(BD\)là phân giác \(\widehat{ABC}\) \(\Rightarrow BD\)cắt \(BC\)

\(\Rightarrow xy\)cắt \(BC\) ( gọi giao điểm là M )

b) Ta có: \(\widehat{A_1}=\widehat{B_1}\left(slt\right)\)\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{B_2}\left(1\right)\)

Mặt khác \(\widehat{M_1}=\widehat{B_2}\left(đvi\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\widehat{A_1}=\widehat{M_1}\)

c) Xét \(\Delta BAM\)\(\widehat{A_1}=\widehat{M_1}\)(câu b)

\(\Rightarrow\Delta BAM\)cân tại \(B\)

\(\Delta BAM\)cân tại \(B\)\(BN\) là đường phân giác

=> \(BN\)đồng thời là đường cao của \(\Delta BAM\)

=> Đpcm

Bài 2:

x y B 150 K H I

*Hình ảnh chỉ mang tính chất minh họa (Nhinf cais anhr thaays gowms quas)

a) Ta cos: \(AH\) vuông góc \(By\)\(;\) \(CK\)vuông góc \(Bx\)

Mà Bx tạo với tia By một góc 150 độ => Bx cắt By tại B

=> AH cắt CK ( tại giao điểm I )

b) Ta có: \(\widehat{ABC}=150^o\Rightarrow\widehat{ABH}=30^o\)

\(\Rightarrow\widehat{BAH}=90-\widehat{ABH}=60^o\)

\(\Rightarrow\widehat{AIC}=\widehat{AIK}=90-\widehat{BAH}=30^o\)

@@ Cách khác

Ta có: \(\widehat{HBK}=\widehat{ABC}=150^o\left(đđ\right)\)

Xét tứ giác BHIK có:

\(\widehat{AIC}=360-\widehat{IHB}-\widehat{IKB}-\widehat{HBK}\) (Nếu chưa học cái này thì chứng minh bằng cách chia tứ giác thành 2 tam giác)

\(\Leftrightarrow\widehat{AIC}=360-90-90-150=30^o\)

27 tháng 6 2017

B1 :a)BC ko song song với BD vì chung B

->BC ko sog sog xy (xy//BD) nên cắt BC tại M

b)

c)NBA+ANB+BNA=180^o

NMB+MBN+BNM=180^o

AMB=MAB; B1=B2 (BN pg ABM)

Nen N1=N2;N1+N2=180^o ->ĐPCM

mỏi quá r` mai nghĩ tiếp mà vẽ hộ tui cái hình bài 2 vs

15 tháng 10 2018

x O y a b

a) Vì Oa ⊥ Ox ⇒ \(\widehat{aOx}\) = 90o

Ta có : \(\widehat{aOy}+\widehat{aOy}=120^o\)

\(\widehat{aOy}+90^o=120^o\)

\(\widehat{aOy}=120^o-90^o=30^o\)

b) Vì Ob ⊥ Oy ⇒ \(\widehat{yOb}=90^o\)

Ta có : \(\widehat{yOb}+\widehat{bOx}=\widehat{yOx}\)

\(90^o+\widehat{bOx}=120^o\)

\(\widehat{bOx}=120^o-90^o=30^o\)

Lại có : \(\widehat{aOb}+\widehat{bOx}=\widehat{aOx}\)

\(\widehat{aOb}+30^o=90^o\)

\(\widehat{aOb}=90^o-30^o=60^o\)

\(\widehat{aOb}+\widehat{xOy}=60^o+120^o=180^o\)

16 tháng 1 2020

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).

=> \(\widehat{ABC}=\widehat{ECK}.\)

Hay \(\widehat{DBH}=\widehat{ECK}.\)

Xét 2 \(\Delta\) vuông \(DBH\)\(ECK\) có:

\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)

\(DB=EC\left(gt\right)\)

\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)

=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).

=> \(DH=EK\) (2 cạnh tương ứng).

c) Xét 2 \(\Delta\) vuông \(DHI\)\(EKI\) có:

\(\widehat{DHI}=\widehat{EKI}=90^0\)

\(DH=EK\left(cmt\right)\)

\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)

=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).

=> \(DI=EI\) (2 cạnh tương ứng).

=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 1:

a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng

Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)

Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)

⇒AB=AF(hai cạnh tương ứng)

b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé

Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)

nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)

c)

Xét ΔABC có AB<AC(gt)

mà góc đối diện với cạnh AB là góc C

và góc đối diện với cạnh AC là góc B

nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)

hay \(\widehat{ABC}>\widehat{C}\)(đpcm)

5 tháng 1 2018

Câu 1 : C

Câu 2 : C

Câu 3 : A B C D M K H 1 2

a) Xét tam giác AMB và tam giác DMC , có :

AM = DM ( gt )

BM = CM ( gt )

góc AMB = góc DMC ( đối đỉnh )

=> tam giác AMB = tam giác DMC

=> DC = AB ( hai cạnh tương ứng )

Vậy DC = AB

b) Xét tam giác AKM và tam giác DHM , có :

góc AKM = góc DHM ( = 90o )

góc M1 = góc M2 ( đối đỉnh )

MA = MD ( gt )

=> tam giác AKM = tam giác DHM ( g-c-g )

=> HD = AK ( hai cạnh tương ứng )

=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )

Vậy HD = AK ; HD // AK ( đpcm )

a: d//AD

mà AD cắt AC

nên d cắt AC tại E

b: Ta có: BE//AD
nên \(\widehat{ABE}=\widehat{BAD}\)(hai góc so le trong) và \(\widehat{AEB}=\widehat{CAD}\)(hai góc đồng vị)

mà \(\widehat{BAD}=\widehat{CAD}\)

nên \(\widehat{ABE}=\widehat{AEB}\)

c: ta có: m\(\perp\)AD

EB//AD

Do đó:m\(\perp\)EB

16 tháng 10 2017

k khó đâu bnn ak

16 tháng 10 2017

Trả lời giúp vs đi!!!!