Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(2c=8\Rightarrow c=4\)
Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)
Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)
Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)
Bài 2:
\(2a=10\Rightarrow a=5\)
\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)
Phương trình elip:
\(\frac{x^2}{25}+\frac{y^2}{16}=1\)
Câu 3:
\(x-2y+3=0\Rightarrow x=2y-3\)
Thay vào pt đường tròn ta được:
\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)
\(\Leftrightarrow5y^2-20y+15=0\)
\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)
Tọa độ 2 giao điểm: \(A\left(-1;1\right)\) và \(B\left(3;3\right)\)
Câu 4:
Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)
Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)
\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)
Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé
a.y= -x2 và y=x -2
Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=x-2\)
\(\Leftrightarrow-x^2+x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào pt 1: y= -x2
\(\Leftrightarrow y=-\left(2\right)^2\)
\(\Leftrightarrow y=-4\)
Thay x=-1 vào pt 2: y=x-2
\(\Leftrightarrow y=-1-2\)
\(\Leftrightarrow y=-3\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (2;-4) và (-1;-3)
b.\(y=-\frac{1}{2}x^2-2x-4\)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(-\frac{1}{2}x^2-2x-4=0\)
\(\Leftrightarrow x\left(\frac{1}{2}x-2\right)=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{2}x-2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)
Thay x=4 vào pt:y=\(-\frac{1}{2}x^2-2x-4\)
\(\Leftrightarrow y=-\frac{1}{2}\times\left(4\right)^2-2\times4-4\)
\(\Leftrightarrow y=-20\)
Thay x=12 vào pt:\(y=-\frac{1}{2}x^2-2x-4\)
\(\Leftrightarrow y=-\frac{1}{2}\times\left(12\right)^2-2\times12-4\)
\(\Leftrightarrow y=-100\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (4;-20) và (12;-100)
c.y=x2 +6x +4 và y=-x + 1
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2+6x+4=-x+1\)
\(\Leftrightarrow x^2+7x+3=0\)
\(\Leftrightarrow x\left(x-7\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x-7=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
Thy x=-3 vào pt (1):y=x2 +6x +4
\(\Leftrightarrow y=\left(-3\right)^2+6\times\left(-3\right)+4\)
\(\Leftrightarrow y=-5\)
Thay x=4 vào pt (2):y=-x + 1
\(\Leftrightarrow y=-\left(4\right)+1\)
\(\Leftrightarrow y=-3\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (-3;-5) và (4;-3)
a) Giá trị của biểu thức A tại x=-1 và y=-1 là:
A=5x3y2=5.(-1)3.(-1)2=5.(-1).1=-5
b) Giá trị của biểu thức B tại x=-3 và y=-1 là:
B=5xy4=5.(-3).(-1)4=-15
c) Giá trị của biểu thức C tại x=5 và y=-2 là:
\(C=\frac{4}{5}xy^3=\frac{4}{5}.5.\left(-2\right)^3=4.\left(-8\right)=-32\)
d) Giá trị của biểu thức D tại x=2 và y=\(\frac{1}{3}\) là:
\(D=\frac{3}{4}x^2y^3=\frac{3}{4}.2^2.\left(\frac{1}{3}\right)^3=3.\frac{1}{27}=\frac{1}{9}\)
e) Giá trị của biểu thức E tại x=\(\frac{1}{2}\) và y=5 là:
\(E=\frac{2}{5}x^2y=\frac{2}{5}.\left(\frac{1}{2}\right)^2.5=2.\frac{1}{4}=\frac{1}{2}\)