K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)

\(=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)

\(=\dfrac{-2x}{1}\cdot\dfrac{x-1}{4}=-\dfrac{x\left(x-1\right)}{2}\)

b: Để \(\dfrac{P-4}{5}=x\) thì P-4=5x

=>P=5x+4

\(\Leftrightarrow-\dfrac{x\left(x-1\right)}{2}=5x+4\)

=>-x2+x=10x+8

=>x2-x=-10x-8

=>x2+9x+8=0

=>x=-8(nhận) hoặc x=-1(loại)

6 tháng 4 2018

Bài 2:

a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)

\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{2}{2x+1}\)

b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)

c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)

+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)

+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)

Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)

24 tháng 12 2018

a) Điều kiện xác định :

x ≠ 3; x ≠ -3; x ≠ 0

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\): ( \(\dfrac{x}{x\left(x-3\right)}\) - \(\dfrac{x-3}{x\left(x-3\right)}\) )

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\) : ( \(\dfrac{x-x+3}{x\left(x-3\right)}\) )

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\) : \(\dfrac{3}{x\left(x-3\right)}\)

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\) = \(\dfrac{x}{\left(x-3\right)\left(x+3\right)}\) - \(\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\)

M = \(\dfrac{3x}{3\left(x-3\right)\left(x+3\right)}\) - \(\dfrac{x\left(x-3\right)^2}{3\left(x-3\right)\left(x+3\right)}\)

M = \(\dfrac{3x-x\left(x-3\right)^2}{3\left(x-3\right)\left(x+3\right)}\) = \(\dfrac{3x-x\left(x^2-6x+9\right)}{3\left(x-3\right)\left(x+3\right)}\)

M = \(\dfrac{3x-x^3+6x^2-9x}{3\left(x-3\right)\left(x+3\right)}\) = \(\dfrac{-x^3+6x^2-6x}{3\left(x-3\right)\left(x+3\right)}\)

Mk đang mệt sai thì bạn thông cảm cho mk.

12 tháng 12 2022

a: \(M=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}:\dfrac{x-x+3}{x\left(x-3\right)}\)

\(=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\cdot\dfrac{x\left(x-3\right)}{3}\)

\(=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\)

\(=\dfrac{3x-x\left(x^2-6x+9\right)}{3\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x-x^3+6x^2-9x}{3\left(x-3\right)\left(x+3\right)}=\dfrac{-x^3+6x^2-6x}{3\left(x-3\right)\left(x+3\right)}\)

b: Để M>1/2 thì M-1/2>0

=>\(\dfrac{-x^3+6x^2-6x}{3\left(x^2-9\right)}-\dfrac{1}{2}>0\)

=>\(\dfrac{-2x^3+12x^2-12x-3x^2+9}{6\left(x^2-9\right)}>0\)

=>\(\dfrac{-2x^3+9x^2-12x+9}{x^2-9}>0\)

TH1: \(\left\{{}\begin{matrix}-2x^3+9x^2-12x+9>0\\x^2-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< -3\)

TH2: \(\left\{{}\begin{matrix}-2x^3+9x^2-12x+9< 0\\x^2-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\-3< x< 3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)-x^2-6x-4}{x}\)

\(=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-6x-4}{x}\)

\(=\dfrac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

30 tháng 4 2018

ta có:

A = \(\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)

= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{x^2-1}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x^2-1\right)}\)

= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)

= \(\left(\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}-\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)

= \(\left(\dfrac{x^2-x+3x-3-6-x^2-2x-1}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)

= \(-\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{2\left(x+1\right)\left(x-1\right)}{3}\)

= \(-\dfrac{10}{3}\)

Vậy phương trình trên ko phụ thuộc vào biến

2 tháng 5 2018

Thanks bn

25 tháng 12 2018

a)Q=\(\dfrac{1+x}{x}\)

b)x không tính được hoặc đề sai

c)?

12 tháng 12 2022

a: \(Q=\dfrac{1+x}{x\left(x+1\right)}\cdot\dfrac{x+1}{1}=\dfrac{x+1}{x}\)

b: Để Q=1 thì x+1=x(loại)

c: \(Q-\dfrac{1}{2}=\dfrac{x+1}{x}-\dfrac{1}{2}=\dfrac{2x+2-x}{2x}=\dfrac{x+2}{2x}\)

TH1: x>0 hoặc x<-2

=>Q>0

TH2: -2<x<0

=>Q<0

1: \(=x^2+x+5=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)

Dấu '=' xảy ra khi x=-1/2

2: \(=-\left(x^2+4x-9\right)\)

\(=-\left(x^2+4x+4-13\right)\)

\(=-\left(x+2\right)^2+13\le13\)

Dấu '=' xảy ra khi x=-2

3: \(=x^2-4x+4+y^2+2y+1+2\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2 và y=-1